
A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda L. Cherry

ABSTRACT

This paper describes the design and implementation of a system for typesetting mathematics.
The language has been designed to be easy to learn and to use by people (for example, secretaries
and mathematical typists) who know neither mathematics nor typesetting. Experience indicates
that the language can be learned in an hour or so, for it has few rules and fewer exceptions. For
typical expressions, the size and font changes, positioning, line drawing, and the like necessary to
print according to mathematical conventions are all done automatically. For example, the input

sum from i=0 to infinity x sub i = pi over 2

produces

infinity

i=0
Σ xi =

π
2

The syntax of the language is specified by a small context-free grammar; a compiler-
compiler is used to make a compiler that translates this language into typesetting commands. Out-
put may be produced on either a phototypesetter or on a terminal with forward and reverse half-line
motions. The system interfaces directly with text formatting programs, so mixtures of text and
mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

1. Introduction
‘‘Mathematics is known in the trade as difficult,

or penalty, copy because it is slower, more difficult, and
more expensive to set in type than any other kind of
copy normally occurring in books and journals.’’ [1]

One difficulty with mathematical text is the mul-
tiplicity of characters, sizes, and fonts. An expression
such as

x−>π /2
lim (tan x)sin 2x = 1

requires an intimate mixture of roman, italic and greek
letters, in three sizes, and a special character or two.
(‘‘Requires’’ is perhaps the wrong word, but mathemat-
ics has its own typographical conventions which are
quite different from those of ordinary text.) Typeset-
ting such an expression by traditional methods is still
an essentially manual operation.

A second difficulty is the two dimensional char-
acter of mathematics, which the superscript and limits
in the preceding example showed in its simplest form.
This is carried further by

a0 +
b1

a1 +
b2

a2 +
b3

a3 + . . .

and still further by

∫ dx
aemx − be−mx

=

1

2m√ ab
log √ aemx − √ b

√ aemx + √ b
1

m√ ab
tanh−1(√ a

√ b
emx)

−1

m√ ab
coth−1(√ a

√ b
emx)

These examples also show line-drawing, built-up char-
acters like braces and radicals, and a spectrum of posi-
tioning problems. (Section 6 shows what a user has to
type to produce these on our system.)

2. Photocomposition
Photocomposition techniques can be used to

solve some of the problems of typesetting mathematics.
A phototypesetter is a device which exposes a piece of
photographic paper or film, placing characters wherever
they are wanted. The Graphic Systems phototypeset-
ter[2] on the UNIX operating system[3] works by shin-
ing light through a character stencil. The character is
made the right size by lenses, and the light beam
directed by fiber optics to the desired place on a piece
of photographic paper. The exposed paper is developed

- 2 -

and typically used in some form of photo-offset repro-
duction.

On UNIX, the phototypesetter is driven by a for-
matting program called TROFF [4]. TROFF was
designed for setting running text. It also provides all of
the facilities that one needs for doing mathematics,
such as arbitrary horizontal and vertical motions, line-
drawing, size changing, but the syntax for describing
these special operations is difficult to learn, and diffi-
cult even for experienced users to type correctly.

For this reason we decided to use TROFF as an
‘‘assembly language,’’ by designing a language for
describing mathematical expressions, and compiling it
into TROFF.

3. Language Design
The fundamental principle upon which we based

our language design is that the language should be easy
to use by people (for example, secretaries) who know
neither mathematics nor typesetting.

This principle implies several things. First,
‘‘normal’’ mathematical conventions about operator
precedence, parentheses, and the like cannot be used,
for to give special meaning to such characters means
that the user has to understand what he or she is typing.
Thus the language should not assume, for instance, that
parentheses are always balanced, for they are not in the
half-open interval (a, b]. Nor should it assume that that
√ a + b can be replaced by (a + b)

1⁄2, or that 1/(1 − x) is

better written as
1

1 − x
(or vice versa).

Second, there should be relatively few rules,
keywords, special symbols and operators, and the like.
This keeps the language easy to learn and remember.
Furthermore, there should be few exceptions to the
rules that do exist: if something works in one situation,
it should work everywhere. If a variable can have a
subscript, then a subscript can have a subscript, and so
on without limit.

Third, ‘‘standard’’ things should happen auto-
matically. Someone who types ‘‘x=y+z+1’’ should get
‘‘x = y + z + 1’’. Subscripts and superscripts should
automatically be printed in an appropriately smaller
size, with no special intervention. Fraction bars have to
be made the right length and positioned at the right
height. And so on. Indeed a mechanism for overriding
default actions has to exist, but its application is the
exception, not the rule.

We assume that the typist has a reasonable pic-
ture (a two-dimensional representation) of the desired
final form, as might be handwritten by the author of a
paper. We also assume that the input is typed on a
computer terminal much like an ordinary typewriter.
This implies an input alphabet of perhaps 100 charac-
ters, none of them special.

A secondary, but still important, goal in our
design was that the system should be easy to imple-

ment, since neither of the authors had any desire to
make a long-term project of it. Since our design was
not firm, it was also necessary that the program be easy
to change at any time.

To make the program easy to build and to
change, and to guarantee regularity (‘‘it should work
ev erywhere’’), the language is defined by a context-free
grammar, described in Section 5. The compiler for the
language was built using a compiler-compiler.

A priori, the grammar/compiler-compiler
approach seemed the right thing to do. Our subsequent
experience leads us to believe that any other course
would have been folly. The original language was
designed in a few days. Construction of a working sys-
tem sufficient to try significant examples required per-
haps a person-month. Since then, we have spent a
modest amount of additional time over sev eral years
tuning, adding facilities, and occasionally changing the
language as users make criticisms and suggestions.

We also decided quite early that we would let
TROFF do our work for us whenever possible. TROFF
is quite a powerful program, with a macro facility, text
and arithmetic variables, numerical computation and
testing, and conditional branching. Thus we have been
able to avoid writing a lot of mundane but tricky soft-
ware. For example, we store no text strings, but simply
pass them on to TROFF. Thus we avoid having to write
a storage management package. Furthermore, we have
been able to isolate ourselves from most details of the
particular device and character set currently in use. For
example, we let TROFF compute the widths of all
strings of characters; we need know nothing about
them.

A third design goal is special to our environ-
ment. Since our program is only useful for typesetting
mathematics, it is necessary that it interface cleanly
with the underlying typesetting language for the benefit
of users who want to set intermingled mathematics and
text (the usual case). The standard mode of operation is
that when a document is typed, mathematical expres-
sions are input as part of the text, but marked by user
settable delimiters. The program reads this input and
treats as comments those things which are not mathe-
matics, simply passing them through untouched. At the
same time it converts the mathematical input into the
necessary TROFF commands. The resulting ioutput is
passed directly to TROFF where the comments and the
mathematical parts both become text and/or TROFF
commands.

4. The Language
We will not try to describe the language pre-

cisely here; interested readers may refer to the appendix
for more details. Throughout this section, we will write
expressions exactly as they are handed to the typeset-
ting program (hereinafter called ‘‘EQN’’), except that
we won’t show the delimiters that the user types to
mark the beginning and end of the expression. The

- 3 -

interface between EQN and TROFF is described at the
end of this section.

As we said, typing x=y+z+1 should produce
x = y + z + 1, and indeed it does. Variables are made
italic, operators and digits become roman, and normal
spacings between letters and operators are altered
slightly to give a more pleasing appearance.

Input is free-form. Spaces and new lines in the
input are used by EQN to separate pieces of the input;
they are not used to create space in the output. Thus

x = y
+ z + 1

also gives x = y + z + 1. Free-form input is easier to
type initially; subsequent editing is also easier, for an
expression may be typed as many short lines.

Extra white space can be forced into the output
by several characters of various sizes. A tilde ‘‘ ˜ ’’
gives a space equal to the normal word spacing in text;
a circumflex giv es half this much, and a tab charcter
spaces to the next tab stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the input. For example, to get

f (t) = 2π ∫ sin(ω t)dt

we write

f(t) = 2 pi int sin (omega t)dt

Here spaces are necessary in the input to indicate that
sin, pi, int, and omega are special, and potentially worth
special treatment. EQN looks up each such string of
characters in a table, and if appropriate gives it a trans-
lation. In this case, pi and omega become their greek
equivalents, int becomes the integral sign (which must
be moved down and enlarged so it looks ‘‘right’’), and
sin is made roman, following conventional mathemati-
cal practice. Parentheses, digits and operators are auto-
matically made roman wherever found.

Fractions are specified with the keyword over:

a+b over c+d+e = 1

produces

a + b
c + d + e

= 1

Similarly, subscripts and superscripts are intro-
duced by the keywords sub and sup:

x2 + y2 = z2

is produced by

x sup 2 + y sup 2 = z sup 2

The spaces after the 2’s are necessary to mark the end
of the superscripts; similarly the keyword sup has to be
marked off by spaces or some equivalent delimiter.
The return to the proper baseline is automatic. Multiple

levels of subscripts or superscripts are of course
allowed: ‘‘x sup y sup z’’ is x yz

. The construct ‘‘some-
thing sub something sup something’’ is recognized as a
special case, so ‘‘x sub i sup 2’’ is x2

i instead of xi
2.

More complicated expressions can now be
formed with these primitives:

∂2 f
∂x2

=
x2

a2
+

y2

b2

is produced by

{partial sup 2 f} over {partial x sup 2} =
x sup 2 over a sup 2 + y sup 2 over b sup 2

Braces {} are used to group objects together; in this
case they indicate unambiguously what goes over what
on the left-hand side of the expression. The language
defines the precedence of sup to be higher than that of
over, so no braces are needed to get the correct associa-
tion on the right side. Braces can always be used when
in doubt about precedence.

The braces convention is an example of the
power of using a recursive grammar to define the lan-
guage. It is part of the language that if a construct can
appear in some context, then any expression in braces
can also occur in that context.

There is a sqrt operator for making square roots
of the appropriate size: ‘‘sqrt a+b’’ produces √ a + b,
and

x = {−b +− sqrt{b sup 2 −4ac}} over 2a

is

x =
−b ± √ b2 − 4ac

2a

Since large radicals look poor on our typesetter, sqrt is
not useful for tall expressions.

Limits on summations, integrals and similar
constructions are specified with the keywords from and
to. To get

∞

i=0
Σ xi → 0

we need only type

sum from i=0 to inf x sub i −> 0

Centering and making the Σ big enough and the limits
smaller are all automatic. The from and to parts are
both optional, and the central part (e.g., the Σ) can in
fact be anything:

lim from {x −> pi /2} (tan˜x) = inf

is

x→π /2
lim (tan x) = ∞

Again, the braces indicate just what goes into the from
part.

- 4 -

There is a facility for making braces, brackets,
parentheses, and vertical bars of the right height, using
the keywords left and right:

left [x+y over 2a right]˜=˜1

makes

x + y
2a

= 1

A left need not have a corresponding right, as we shall
see in the next example. Any characters may follow
left and right, but generally only various parentheses
and bars are meaningful.

Big brackets, etc., are often used with another
facility, called piles, which make vertical piles of
objects. For example, to get

sign(x) ≡

1
0

−1

if
if
if

x > 0
x = 0
x < 0

we can type

sign (x) ˜==˜ left {
rpile {1 above 0 above −1}
˜˜lpile {if above if above if}
˜˜lpile {x>0 above x=0 above x<0}

The construction ‘‘left {’’ makes a left brace big
enough to enclose the ‘‘rpile {...}’’, which is a right-
justified pile of ‘‘above ... above ...’’. ‘‘lpile’’ makes a
left-justified pile. There are also centered piles.
Because of the recursive language definition, a pile can
contain any number of elements; any element of a pile
can of course contain piles.

Although EQN makes a valiant attempt to use
the right sizes and fonts, there are times when the
default assumptions are simply not what is wanted. For
instance the italic sign in the previous example would
conventionally be in roman. Slides and transparencies
often require larger characters than normal text. Thus
we also provide size and font changing commands:
‘‘size 12 bold {A˜x˜=˜y}’’ will produce A x == y.
Size is followed by a number representing a character
size in points. (One point is 1/72 inch; this paper is set
in 9 point type.)

If necessary, an input string can be quoted in
"...", which turns off grammatical significance, and any
font or spacing changes that might otherwise be done
on it. Thus we can say

lim˜ roman "sup" ˜x sub n = 0

to ensure that the supremum doesn’t become a super-
script:

lim sup xn = 0

Diacritical marks, long a problem in traditional
typesetting, are straightforward:

ẋ + x̂ + ỹ + X̂ + Ÿ = z + Z

is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar

There are also facilities for globally changing
default sizes and fonts, for example for making view-
graphs or for setting chemical equations. The language
allows for matrices, and for lining up equations at the
same horizontal position.

Finally, there is a definition facility, so a user can
say

define name "..."

at any time in the document; henceforth, any occur-
rence of the token ‘‘name’’ in an expression will be
expanded into whatever was inside the double quotes in
its definition. This lets users tailor the language to their
own specifications, for it is quite possible to redefine
keywords like sup or over. Section 6 shows an example
of definitions.

The EQN preprocessor reads intermixed text and
equations, and passes its output to TROFF. Since TROFF
uses lines beginning with a period as control words
(e.g., ‘‘.ce’’ means ‘‘center the next output line’’), EQN
uses the sequence ‘‘.EQ’’ to mark the beginning of an
equation and ‘‘.EN’’ to mark the end. The ‘‘.EQ’’ and
‘‘.EN’’ are passed through to TROFF untouched, so they
can also be used by a knowledgeable user to center
equations, number them automatically, etc. By default,
however, ‘‘.EQ’’ and ‘‘.EN’’ are simply ignored by
TROFF, so by default equations are printed in-line.

‘‘.EQ’’ and ‘‘.EN’’ can be supplemented by
TROFF commands as desired; for example, a centered
display equation can be produced with the input:

.ce

.EQ
x sub i = y sub i ...
.EN

Since it is tedious to type ‘‘.EQ’’ and ‘‘.EN’’
around very short expressions (single letters, for
instance), the user can also define two characters to
serve as the left and right delimiters of expressions.
These characters are recognized anywhere in subse-
quent text. For example if the left and right delimiters
have both been set to ‘‘#’’, the input:

Let #x sub i#, #y# and #alpha# be positive

produces:

Let xi, y and α be positive

Running a preprocessor is strikingly easy on
UNIX. To typeset text stored in file ‘‘f ’’, one issues the
command:

- 5 -

eqn f troff

The vertical bar connects the output of one process
(EQN) to the input of another (TROFF).

5. Language Theory
The basic structure of the language is not a par-

ticularly original one. Equations are pictured as a set of
‘‘boxes,’’ pieced together in various ways. For exam-
ple, something with a subscript is just a box followed
by another box moved downward and shrunk by an
appropriate amount. A fraction is just a box centered
above another box, at the right altitude, with a line of
correct length drawn between them.

The grammar for the language is shown below.
For purposes of exposition, we have collapsed some
productions. In the original grammar, there are about 70
productions, but many of these are simple ones used
only to guarantee that some keyword is recognized
early enough in the parsing process. Symbols in capital
letters are terminal symbols; lower case symbols are
non-terminals, i.e., syntactic categories. The vertical
bar indicates an alternative; the brackets [] indicate
optional material. A TEXT is a string of non-blank
characters or any string inside double quotes; the other
terminal symbols represent literal occurrences of the
corresponding keyword.

eqn : box eqn box

box : text
 { eqn }
 box OVER box
 SQRT box
 box SUB box box SUP box
 [L C R]PILE { list }
 LEFT text eqn [RIGHT text]
 box [FROM box] [TO box]
 SIZE text box
 [ROMAN BOLD ITALIC] box
 box [HAT BAR DOT DOTDOT TILDE]
 DEFINE text text

list : eqn list ABOVE eqn

text : TEXT

The grammar makes it obvious why there are
few exceptions. For example, the observation that
something can be replaced by a more complicated
something in braces is implicit in the productions:

eqn : box eqn box
box : text { eqn }

Anywhere a single character could be used, any legal
construction can be used.

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

a over b over c ?

Is it

{a over b} over c

or is it

a over {b over c} ?

To answer questions like this, the grammar is
supplemented with a small set of rules that describe the
precedence and associativity of operators. In particular,
we specify (more or less arbitrarily) that over associates
to the left, so the first alternative above is the one cho-
sen. On the other hand, sub and sup bind to the right,
because this is closer to standard mathematical practice.
That is, we assume xab

is x(ab), not (xa)b.

The precedence rules resolve the ambiguity in a
construction like

a sup 2 over b

We define sup to have a higher precedence than over, so

this construction is parsed as
a2

b
instead of a

2
b .

Naturally, a user can always force a particular
parsing by placing braces around expressions.

The ambiguous grammar approach seems to be
quite useful. The grammar we use is small enough to
be easily understood, for it contains none of the produc-
tions that would be normally used for resolving ambi-
guity. Instead the supplemental information about
precedence and associativity (also small enough to be
understood) provides the compiler-compiler with the
information it needs to make a fast, deterministic parser
for the specific language we want. When the language
is supplemented by the disambiguating rules, it is in
fact LR(1) and thus easy to parse[5].

The output code is generated as the input is
scanned. Any time a production of the grammar is rec-
ognized, (potentially) some TROFF commands are out-
put. For example, when the lexical analyzer reports
that it has found a TEXT (i.e., a string of contiguous
characters), we have recognized the production:

text : TEXT

The translation of this is simple. We generate a local
name for the string, then hand the name and the string
to TROFF, and let TROFF perform the storage manage-
ment. All we save is the name of the string, its height,
and its baseline.

As another example, the translation associated
with the production

box : box OVER box

is:

- 6 -

Width of output box =
slightly more than largest input width

Height of output box =
slightly more than sum of input heights

Base of output box =
slightly more than height of bottom input box

String describing output box =
move down;
move right enough to center bottom box;
draw bottom box (i.e., copy string for bottom box);
move up; move left enough to center top box;
draw top box (i.e., copy string for top box);
move down and left; draw line full width;
return to proper base line.

Most of the other productions have equally simple
semantic actions. Picturing the output as a set of prop-
erly placed boxes makes the right sequence of position-
ing commands quite obvious. The main difficulty is in
finding the right numbers to use for esthetically pleas-
ing positioning.

With a grammar, it is usually clear how to
extend the language. For instance, one of our users
suggested a TENSOR operator, to make constructions
like

l
m

k

n
T

j

i

Grammatically, this is easy: it is sufficient to add a pro-
duction like

box : TENSOR { list }

Semantically, we need only juggle the boxes to the
right places.

6. Experience
There are really three aspects of interest—how

well EQN sets mathematics, how well it satisfies its
goal of being ‘‘easy to use,’’ and how easy it was to
build.

The first question is easily addressed. This
entire paper has been set by the program. Readers can
judge for themselves whether it is good enough for
their purposes. One of our users commented that
although the output is not as good as the best hand-set
material, it is still better than average, and much better
than the worst. In any case, who cares? Printed books
cannot compete with the birds and flowers of illumi-
nated manuscripts on esthetic grounds, either, but they
have some clear economic advantages.

Some of the deficiencies in the output could be
cleaned up with more work on our part. For example,
we sometimes leave too much space between a roman
letter and an italic one. If we were willing to keep
track of the fonts involved, we could do this better more
of the time.

Some other weaknesses are inherent in our out-
put device. It is hard, for instance, to draw a line of an
arbitrary length without getting a perceptible overstrike
at one end.

As to ease of use, at the time of writing, the sys-
tem has been used by two distinct groups. One user
population consists of mathematicians, chemists, physi-
cists, and computer scientists. Their typical reaction
has been something like:

(1) It’s easy to write, although I make the following
mistakes...

(2) How do I do...?

(3) It botches the following things.... Why don’t you
fix them?

(4) You really need the following features...

The learning time is short. A few minutes gives
the general flavor, and typing a page or two of a paper
generally uncovers most of the misconceptions about
how it works.

The second user group is much larger, the secre-
taries and mathematical typists who were the original
target of the system. They tend to be enthusiastic con-
verts. They find the language easy to learn (most are
largely self-taught), and have little trouble producing
the output they want. They are of course less critical of
the esthetics of their output than users trained in mathe-
matics. After a transition period, most find using a
computer more interesting than a regular typewriter.

The main difficulty that users have seems to be
remembering that a blank is a delimiter; even experi-
enced users use blanks where they shouldn’t and omit
them when they are needed. A common instance is
typing

f(x sub i)

which produces

f (xi)

instead of

f (xi)

Since the EQN language knows no mathematics, it can-
not deduce that the right parenthesis is not part of the
subscript.

The language is somewhat prolix, but this
doesn’t seem excessive considering how much is being
done, and it is certainly more compact than the corre-
sponding TROFF commands. For example, here is the
source for the continued fraction expression in Section
1 of this paper:

a sub 0 + b sub 1 over
{a sub 1 + b sub 2 over

{a sub 2 + b sub 3 over
{a sub 3 + ... }}}

This is the input for the large integral of Section 1;

- 7 -

notice the use of definitions:

define emx "{e sup mx}"
define mab "{m sqrt ab}"
define sa "{sqrt a}"
define sb "{sqrt b}"
int dx over {a emx − be sup −mx} ˜=˜
left { lpile {

1 over {2 mab} ˜log˜
{sa emx − sb} over {sa emx + sb}

above
1 over mab ˜ tanh sup −1 (sa over sb emx)

above
−1 over mab ˜ coth sup −1 (sa over sb emx)

}

As to ease of construction, we have already
mentioned that there are really only a few person-
months invested. Much of this time has gone into two
things—fine-tuning (what is the most esthetically pleas-
ing space to use between the numerator and denomina-
tor of a fraction?), and changing things found deficient
by our users (shouldn’t a tilde be a delimiter?).

The program consists of a number of small,
essentially unconnected modules for code generation, a
simple lexical analyzer, a canned parser which we did
not have to write, and some miscellany associated with
input files and the macro facility. The program is now
about 1600 lines of C [6], a high-level language remi-
niscent of BCPL. About 20 percent of these lines are
‘‘print’’ statements, generating the output code.

The semantic routines that generate the actual
TROFF commands can be changed to accommodate
other formatting languages and devices. For example,
in less than 24 hours, one of us changed the entire
semantic package to drive NROFF, a variant of TROFF,
for typesetting mathematics on teletypewriter devices
capable of reverse line motions. Since many potential
users do not have access to a typesetter, but still have to
type mathematics, this provides a way to get a typed
version of the final output which is close enough for
debugging purposes, and sometimes even for ultimate
use.

7. Conclusions
We think we have shown that it is possible to do

acceptably good typesetting of mathematics on a photo-
typesetter, with an input language that is easy to learn
and use and that satisfies many users’ demands. Such a
package can be implemented in short order, giv en a
compiler-compiler and a decent typesetting program
underneath.

Defining a language, and building a compiler for
it with a compiler-compiler seems like the only sensible
way to do business. Our experience with the use of a
grammar and a compiler-compiler has been uniformly
favorable. If we had written everything into code
directly, we would have been locked into our original
design. Furthermore, we would have nev er been sure

where the exceptions and special cases were. But
because we have a grammar, we can change our minds
readily and still be reasonably sure that if a construc-
tion works in one place it will work everywhere.

Acknowledgements
We are deeply indebted to J. F. Ossanna, the

author of TROFF, for his willingness to modify TROFF
to make our task easier and for his continuous assis-
tance during the development of our program. We are
also grateful to A. V. Aho for help with language the-
ory, to S. C. Johnson for aid with the compiler-
compiler, and to our early users A. V. Aho, S. I. Feld-
man, S. C. Johnson, R. W. Hamming, and M. D. McIl-
roy for their constructive criticisms.

References
[1] A Manual of Style, 12th Edition. University of

Chicago Press, 1969. p 295.

[2] Model C/A/T Phototypesetter. Graphic Systems,
Inc., Hudson, N. H.

[3] Ritchie, D. M., and Thompson, K. L., ‘‘The
UNIX time-sharing system.’’ Comm. ACM 17, 7
(July 1974), 365-375.

[4] Ossanna, J. F., TROFF User’s Manual. Bell
Laboratories Computing Science Technical
Report 54, 1977.

[5] Aho, A. V., and Johnson, S. C., ‘‘LR Parsing.’’
Comp. Surv. 6, 2 (June 1974), 99-124.

[6] B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language. Prentice-Hall, Inc., 1978.

