

January 1 984
307 -1 53 Issue 1

n n~nnWTsystem V
~ U~ UU\\. Release 2.0

DOCUMENTER'S WORKBENCH™ Software
Preprocessor Reference

©1983 Western Electric
All Right? Reserved

Printed in USA

UNIX is a trademark of Bell Laboratories

Western Electric

DOCUMENTER'S WORKBENCH is a trademark of Western Electric

Chapter 1

Chapter 2

Chapter 3

Chapter 4

CONTENTS

INTRODUCTION

TABLE FORMATTING
PROGRAM

PIC GRAPHICS LANGUAGE

MATHEMATICS TYPESETTING
PROGRAM

- 1 -

Chapter 1

INTRODUCTION
This book is a guide and reference manual for the text preprocessors
that are provided in the UNIX* System DOCUMENTER'S
WORKBENCHt software. This system provides an integrated set of
text processing tools for easy, flexible, and professional
documentation production. Books that describe other aspects of the
DOCUMENTER'S WORKBENCH software are:

• Introduction and Reference Manual-Select Code 307-150

• Text Formatters Reference-Select Code 307-151

• Macro Packages Reference-Select Code 307-152

Each of the chapters in this book is a user guide to a specific text
preprocessor. Information is provided in each chapter that will allow
the user to understand and use the preprocessors. Numerous
examples are included that will provide the user a base to build on
when learning to use the preprocessors. The beginning user should
refer to the DOCUMENTER'S WORKBENCH software Introduction
and Reference Manual for a better overall description of the text
processing tools available on the UNIX system.

1. Using the Preprocessors

A preprocessor allows a user to produce complicated formatted
output such as tables and pictures from an input language that is
easier to use than the formatter language. For example, a
complicated, multi-column table that is boxed on all sides, with each
item properly aligned and boxed can be produced with only a few
lines of input text and the table data using the tbl preprocessor. To
produce the same output using only the formatter requests would be
much more difficult and time consuming.

* UNIX is a trademark of Bell Laboratories.

t DOCUMENTER'S WORKBENCH is a trademark of Western Electric Company.

1-1

INTRODUCTION

To use the preprocessors, the unformatted text file is written using
macros or formatter requests with the input destined for the
preprocessor set off by delimiting macros or characters. The
preprocessor works on the unformatted file first, replacing the text
between the delimiters with the text formatter requests that produce
the desired output. The output from the preprocessor is then
processed by a text formatter. Normally, this is done using the
piping mechanism of the UNIX system. For example:

tbl file I eqn I troff

would be the command line used to format with troff a file
containing tables and equations. Note that several preprocessors can
be used in the same process because each has its own language and
each one only expands input found between its own delimiters.

2. Preprocessors Covered

The following preprocessors are covered in this book.

• Chapter 2- Table Formatting Program (tbl)

• Chapter 3-Picture Graphics Language (pic)

• Chapter 4-Mathematics Typesetting Program (eqn)

1-2

Chapter 2

TABLE FORMATTING PROGRAM

PAGE

1. Introduction ... 2-1
2. Usage... 2-1

3. Input Commands ... 2-3

4. Additional Command Lines. 2-13

5. Examples.. 2-13

Chapter 2

TABLE FORMATTING PROGRAM

1. Introduction

The tbl program is a document formatting preprocessor for the
nroff and troff formatters that makes fairly complex tables easy to
specify and enter. Tables consist of columns which may be
independently centered, right-adjusted, left-adjusted, or aligned by
decimal points. Headings may be placed over single columns or
groups of columns. A table entry may contain equations or consist of
several rows of text. Horizontal or vertical lines may be drawn as
desired in the table, and any table or element may be enclosed in a
box.

A description of a table is translated by the tbl program into a list of
nroff/troff formatter requests that will produce the table. The tbl
program isolates a portion of a job that it can successfully handle
(text between the .TS and .TE delimiting macros) and leaves the
remainder for other programs. Thus, tbl may be used with the
equation formatting program (eqn), the graphics formatting
program (pic), and/ or various formatter layout macro packages
without function duplication.

2. Usage

On the UNIX system, the tbl program can be run on a simple table
with the command

tbl filename I troff

When there are several input files containing tables, equations,
pictures, and mm macro requests, the normal command is

tbl filel file2 ... 1 eqn I troff -mm

The usual options may be used on the troff formatter. Usage of the
nroff formatter is similar to that of troff. If a file name is "- ",

2-1

TBL

the standard input is read at that point.

For the convenience of users employing line printers without
adequate driving tables or post-filters, there is a special -TX
command-line option to tbl which produces output that does not have
fractional line motions.

When both tbl and eqn programs operate on the same file, tbl
should be called first. If there are no equations within tables, either
sequence works. It is usually faster to execute tbl first since eqn
normally produces a larger expansion of the input. However, if there
are equations within tables (using the delim statement in eqn), tbl
must be executed first or the output will be scrambled. Use of
equations in n-style (numeric) columns should be avoided since tbl
attempts to split numerical format items into two parts. The
delim (xy) global option prevents splitting numerical columns within
delimiters. For example, if the eqn delimiters are "$$", a delim ($$)
statement causes a numerical column such as

1245 $± 16$

to be divided after 1245, not after 16.

The tbl program accepts up to 35 columns; the actual number that
can be processed may be smaller depending on availability of troff
formatter number registers. Number register names used by tbl
must be avoided within tables. These include 2-digit numbers from
31 to 99 and strings of the form 4x, 5x, #x, x+, xl, AX, and X-, where x
is any lowercase letter. The names ##, #-, and #A are also used in
certain circumstances. To conserve register names, the n and a key
letters (key letters are introduced in paragraph 3.2) share a register.
Hence, the restriction that they may not be used in the same column.

As an aid in writing layout macros, tbl defines a number register TW
which is the table width. The TW number register is defined by the
time that the .TE macro is invoked and may be used in the expansion
of that macro. More importantly, to assist in laying out multipage
boxed tables, the macro T# is defined to produce the bottom lines
and side lines of a boxed table and then be invoked at its end. By use
of this macro in the page footer, a multipage table can be boxed. In

2-2

TBL

particular, thd mm macros can be used to print a multipage boxed
table with a repeated heading by giving the argument H to the .TS
macro. If the table start macro is written

.TSH

then, a line of the form

.TH

must be given in the table after any table heading (or at the start if
none). Material up to the .TH is placed at the top of each page of the
table. The remaining lines in the table are placed on several pages as
required. This is not a feature of tbl but of the mm macros.

3. Input Commands

Input to tbl is text for a document with tables preceded by a .TS
(table start) command and followed by a .TE (table end) command.
The tbl program processes the tables, generates formatting requests,
and leaves the text unchanged. The .TS and .TE lines are copied so
that troff formatter layout macros (such as memorandum formatting
macros) can use these lines as delimiters. Arguments on the .TS or
.TE lines are copied, but otherwise ignored, and may be used by
document layout macro requests.

2-3

TBL

The general format of the input is

text
.TS
table
.TE
text
.TS
table
.TE
text

The format of each table is

.TS
options;
format.
data
.TE

Each table is independent and contains:

• Global options {3.1}

• A format section describing individual columns and rows of the
table {3.2}

• Data to be printed {3.3}.

The format section and data are always required but not the options.

2-4

TBL

3.1 Global Options

There may be a single line of options affecting the whole table. If
present, this line must immediately follow the .TS line and must
contain a list of option names separated by spaces, tabs, or commas
and must be terminated by a semicolon. Allowable options are:

• center - center table (default is left-adjust)

• expand - make table as wide as current line length

• box - enclose table in a box

• allbox - enclose each item of table in a box

• double box - enclose table in two boxes

• tab (x) - separate data items by using x instead of tab

• linesize (n) - set lines or rules (e.g., from box) in n-point type

• delim (xy) - recognize x and yas eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing
appropriate .ne (need) requests. These requests are calculated from
the number of lines in the tables. If there are spacing requests
embedded in the input, the .ne requests may be inaccurate. Normal
troff formatter procedures, such as keep-release macros, are used in
that case. If a multipage boxed table is required, macros designed for
this purpose (. TS Hand . TH) should be used.

2-5

TBL

3.2 Format Section

The format section of the table specifies the layout of the columns.
Each line in the format section corresponds to one line of table data
(except the last format line corresponds to all following data lines up
to any additional .T& command line). Each format line contains a
key letter for each column of the table. Key letters may be
separated by spaces or tabs for readibility purposes. Key letters are:

L or I

R or r

Cor c

Nor n

A or a

S or s

Indicates a left-adjusted column entry.

Indicates a right-adjusted column entry.

Indicates a centered column entry.

Indicates a numerical column entry. Numerical
entries are aligned so that the units digits of
numbers line up.

Indicates an alphabetic subcolumn. All
corresponding entries are aligned on the left and
positioned so that the widest entry is centered
within the column.

Indicates a spanned heading. The entry from the
previous column continues across this column (not
allowed for the first column of the table).

Indicates a vertically spanned heading. The entry
from the previous row continues down through this
row (not allowed for the first row of the table).

When numerical column alignment (n) is specified, a location for the
decimal point is sought. The rightmost dot (.) adjacent to a digit is
used as a decimal point. If there is no dot adjoining a digit, the
rightmost digit is used as a units digit. If no alignment is indicated,
the item is centered in the column. However, the special nonprinting
character string \ & may be used to override dots and digits or to
align alphabetic data. This aligns the dots and the \& disappears
from the final output.

2-6

TBL

In the following example, items shown in the INPUT column will be
aligned (in a numerical column) as shown in the OUTPUT column.

INPUT:

.TS
center;
n.
13
4.2
26.4.12
abcdefg
abcd\&efg
abcdefg\&
43\&3.22
749.12
.TE

OUTPUT:

13
4.2

26.4.12
abcdefg

abcdefg
abcdefg

433.22
749.12

If numerical data are used in the same column with wider L (the
capital L key letter is used instead of lowercase for readability) or r
type table entries, the widest number is centered relative to the wider
L or r items. Alignment within the numerical items is preserved.
This is similar to the behavior of a type data. Alphabetic
subcolumns (requested by the a key letter) are always slightly
indented relative to L items. If necessary, the column width is
increased to force this. This is not true for n type entries.

Note: The n and a items should not be used in the same
column.

The end of the format section is indicated by a period. The layout of
key letters in the format section resembles the layout of the actual
data in the table. Thus, a simple 3-column format might appear as

css
Inn.

The first line of the table contains a heading centered across all three
columns. Each remaining line contains a left-adjusted item in the
first column followed by two columns of numerical data.

2-7

TBL

A sample table in this format is:

OVERALL TITLE
Item-a 34.22 9.1
Item-b 12.65 .02
Item -c 23 5.8
Total 69.87 14.92

Instead of listing the format of successive lines of a table on
consecutive lines of the format section, successive line formats may
be given on the same line, separated by commas. The format for the
above example could be written:

c s s, Inn.

Additional features of the key letter system are:

• Horizontal lines - A key letter may be replaced by underscore
(_) to indicate a horizontal line in place of the column entry or
equal (=) to indicate a double horizontal line. If an adjacent
column contains a horizontal line or if there are vertical lines
adjoining this column, the horizontal line is extended to meet
nearby lines. If any data entry is provided for this column, it is
ignored and a warning message is printed.

• Vertical lines - A vertical bar (I) placed between column key
letters will cause a vertical line between the corresponding
columns of the table. A vertical bar to the left of the first key
letter or to the right of the last one produces a line at the edge of
the table. If two vertical bars appear between key letters, a
double vertical line is drawn.

• Space between columns - A number may follow the key letter
indicating the amount of separation between this column and the
next column. The number specifies the separation in ens. One
en is about the width of the letter "n". More precisely, an en is
the number of points (1 point = 1/72 inch) equal to half the
current type size. If the expand option is used, these numbers
are multiplied by a constant such that the table is as wide as the
current line length. The default column separation number is 3.
If the separation is changed, the worst case (largest space

2-8

TBL

requested) governs.

• Vertical spanning - Vertically spanned items extending over
several rows of the table are centered in their vertical range. If
a key letter is followed by t or T, any corresponding vertically
spanned item will begin at the top line of its range.

• Font changes - A key letter followed by a string containing a
font name or number preceded by the letter for F indicates that
the corresponding column should be in a different font from the
default font (usually Roman). All font names are one or two
letters. A I-letter font name should be separated from whatever
follows by a space or tab. The single letters B, b, I, and i are
shorter synonyms for m and fl. Font-change requests given
with the table entries override these specifications.

• Point size changes - A key letter followed by p or P and a
number indicates the point size of the corresponding table
entries. If the number is a signed digit, it is taken as an
increment or decrement from the current point size. If both a
point size and a column separation value are given, one or more
blanks must separate them.

• Vertical spacing changes - A key letter followed by v or V
and a number indicates the vertical line spacing used within a
multiline table entry. The number may be a signed digit, in
which case it is taken as an increment or decrement from the
current vertical spacing. A column separation value must be
separated by blanks or some other specification from a vertical
spacing request. This request has no effect unless the
corresponding table entry is a text block.

• Column width indication - A key letter followed by w or W
and a width value in parentheses indicates minimum column
width. If the largest element in the column is not as wide as the
width value given after the w, the largest element is assumed to
be that wide. If the largest element in the column is wider than
the specified value, its width is used. The width is also used as a
default line length for included text blocks. Normal troff
formatter units can be used to scale the width value. The default
value is ens if none are used. If the width specification is a
unitless integer, the parentheses may be omitted. If another
width value is given in a column, the last one controls the width.

2-9

TBL

• Equal-width columns - A key letter followed by e or E
indicates equal-width columns. All columns whose key letters
are followed by e or E are made the same width. This permits a
group of regularly spaced columns.

• Staggered columns - A key letter followed by u or U indicates
that the corresponding entry is to be moved up one-half line.
This makes it easy to have a column of differences between
numbers in an adjoining column. The allbox option does not
work with staggered columns.

• Zero-width item - A key letter followed by z or Z indicates
that the corresponding data item is to be ignored in calculating
column widths. This may be useful in allowing headings to run
across adjacent columns where spanned headings would be
inappropriate.

• Default - Column descriptors missing from the end of a format
line are assumed to be L. The longest line in the format section,
however, defines the number of columns in the table. Extra
columns in the data are ignored.

The order of the features is immaterial. They need not be separated
by spaces except as indicated to avoid ambiguities involving point size
and font changes. Thus, a numerical column entry in italic font and
12-point type with a minimum width of 2.5 inches and separated by 6
ens from the next column could be specified as

np12w(2.5i)fI 6

3.3 Data To Be Printed

Data for the table are input after the format section. Each table line
is typed as one line of data. Very long input lines can be broken.
Any line whose last character is a backslash (\) is combined with the
following line; i.e., the backslash vanishes. Data for different
columns (table entries) are separated by tabs or by whatever
character has been specified in the tab global option {3.1}.

2-10

TBL

There are a few special cases of data entries:

• troff commands within tables - An input line beginning with a
dot and followed by anything but a number (.xx) is assumed to be
a request to the formatter and is passed through unchanged
retaining its position in the table. For example, a space within a
table may be produced with the .sp request in the data.

• Full width horizontal lines - An input line containing only the _
(underscore) character or = (equal sign) is taken to be a single or
double line, respectively, extending the full width of the table.

• Single column horizontal lines - An input table entry containing
only the _ character or the = is taken to be a single or double
line extending the full width of the column. Such lines are
extended to meet horizontal or vertical lines adjoining this
column. To obtain these characters explicitly in a column, they
should be preceded by a \& or followed by a space before the
usual tab or newline character.

• Short horizontal lines - An input table entry containing only the
string _ is assumed to be a single line as wide as the contents of
the column. It is not extended to meet adjoining lines.

• Repeated characters - An input table entry containing only a
string of the form \Rx, where x is any character, is replaced by
repetitions of the character x as wide as data in the column. The
sequence is not extended to meet adjoining columns.

• Vertically spanned items - An input table entry containing only
the \~ character string indicates that the table entry immediately
above spans downward over this row. It is equivalent to a table
format key letter of ~.

• Text blocks - In order to include a block of text as a table entry,
precede it by T{ and follow it by T}. Thus, the sequence

.,. T{
block of
text
T} '"

2-11

TBL

is the way to enter as a single entry in the table something that
cannot conveniently be typed as a si~le string between tabs.
The T} (end delimiter) must begin a line. Additional columns of
data may follow after a tab on the same line. Text blocks are
pulled out from the table, processed separately by the formatter,
and replaced in the table as a solid block.

Various limits in the troff program are likely to be exceeded if
30 or more text blocks are used in a table. This produces
diagnostic messages such as "too many string/macro names" or
"too many number registers".

If no line length is specified in the block of text or in the table
format, the default is to use

Lx C / (N + 1)

where L is the current line length, C is the number of table
columns spanned by the text, and N is the total number of
columns in the table.

Other parameters (point size, font, etc.) used in typesetting the
text block are:

(a) those in effect at the beginning of the table (including
the effect of the . TS macro)

(b) any table format specifications of size, spacing, and font
using the p, v, and f modifiers to the column key letters

(c) troff requests within the text block itself (requests
within the table data but not within the text block do
not affect that block).

Although any number of lines may be present in a table, only the
first 200 lines are used in setting up the table. A multi page table
may be arranged as several single-page tables if this proves to be a
problem.

When calculating column widths, all table entries are assumed to be
in the font and size being used when the .TS command was

2-12

TBL

encountered. This is true except for font and size changes indicated
in the table format section or within the table data (as in the entry
\s+3Data\sO). Because arbitrary troff requests may be sprinkled
in a table, care must be taken to avoid confusing width calculations.
It is not possible to change the number of columns, the space between
columns, the global options such as box, or the selection of columns
to be made equal in width.

4. Additional Command Lines

To change the format of a table after many similar lines, as with
subheadings or summarizations, the .T& (table continue) command is
used to change column parameters. It is not recognized after the
first 200 lines of a table. The outline of such a table input is

.TS
options;
format.
data

.T&
format.
data
.T&
format.
data
.TE

U sing this procedure, each table line can be close to its corresponding
format line.

5. Examples

Figures 2-1 through 2-6 are included to show input and output
information that illustrate the basic concepts of the tbl program.
The ® symbol in the input data represents a tab character.
Although each figure has a title that indicates an option or feature,
other examples of use may be gleaned from them. For instance,
Figure 2-5 also indicates the requesting of bold type print in the
format area.

2-13

TBL

INPUT:

OUTPUT:

2-14

.TS
box;
ccc
I I 1.
Language@Authors@Runs on
.sp

Fortran@Many@Almost anything
PUl@IBM@360/370
C@ BTL@11/45,H6000,370
BLISS®Carnegie-Mellon®PDP-lO,ll
IDS® Honeywell@H6000
Pascal®Stanford®370
.TE

Language Authors Runs on

Fortran Many Almost anything
PL/I IBM 360/370
C BTL 11/45,H6000,370
BLISS Carnegie-Mellon PDP-IO,l1
IDS Honeywell H6000
Pascal Stanford 370

Figure 2-1. Table Using "box" Option

I

INPUT:

OUTPUT:

.TS
allbox;
css
ccc
n n n.
AT&T Common Stock
Year@ Price@Dividend
1971@41-54@$2.60
2@41-54@2.70
3@46-55@2.87
4@40-53@3.24
5@45-52@3.40
6@51-59@.95*
.TE
* (first quarter only)

AT&T Common Stock I
Year Price Dividend

1971 41-54 $2.60
2 41-54 2.70

3 46-55 2.87

4 40-53 3.24

5 45-52 3.40

6 51-59 .95*

* (first quarter only)

Figure 2-2. Table Using "allbox" Option

TBL

2-15

TBL

INPUT:

OUTPUT:

.TS
box;
css
clclc
1111 n.
Major New York Bridges

Bridge® Designer® Length

Brooklyn®J. A. Roebling®1595
Manha ttan ® G. Linden thaI ® 1470
Williamsburg®L. L. Buck®1600

Queensborough!) Palmer &Q:) 1182
® Hornbostel

®®1380
Triborough®O. H. Ammann®_
®®383

Bronx Whitestone®O. H. Ammann®2300
Throgs Neck®O. H. Ammann®1800
.TE

Major New York Bridges

Bridge Designer Length

Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600

Queensborough Palmer & 1182
Hornbostel

1380
Triborough O. H. Ammann

383

Bronx Whitestone O. H. Ammann 2300
Throgs Neck O. H. Ammann 1800

Figure 2-3. Table Using "vertical bar" Key Letter Feature

2-16

INPUT:

OUTPUT:

.TS
box;
LLL
LL
LLILB
LL
LLL.
januaryG]februaryG] march
april G] may
juneG]julyG] Months
august(l) september
octoberCT) novemberG] december
.TE

january february march
april may

I june july Months
august september
october november december

TBL

Figure 2-4. Table Using Horizontal Lines In Place Of Key
Letters

2-17

TBL

INPUT:

OUTPUT:

.TS
box;
cfB s s s.
Composition of Foods

.T&
c I c s s
c I c s s
c I c I c I c.
Food® Percent by Weight
\A®_
\ A ® Protein® Fat® Carbo­
\A®\A®\A®hydrate

.T&
II n I n I n.
Apples® o4® .5® 13.0
Halibut®1804®5.2® ...
Lima beans@7.5®.8®22.0
Milk®3.3®4.0®5.0
Mushrooms®3.5® o4® 6.0
Rye bread®9.0®.6®52.7
.TE

Composition of Foods
Percent by Weight

Food
Protein Fat

Carbo-
hydrate

Apples A .5 13.0
Halibut 1804 5.2 ...
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 A 6.0
Rye bread 9.0 .6 52.7

Figure 2-5. Table Using Additional Command Lines

2-18

INPUT:

OUTPUT:

Era
Precambrian

Paleozoic

Mesozoic

Cenozoic

.TS
allbox;
cfI s s
cw(li) cw(1.75i) cw(1.75i)
I I 1.
New York Area Rocks
.sp
Era® Formation® Age (years)
Precambrian® Reading Prong® > 1 billion
Paleozoic®Manhattan Prong®400 million
Mesozoic®T{
.na
Newark Basin, incl.
Stockton,Lockatong, and Brunswick
formations
.ad
T}®200 million
Cenozoic®Coastal Plain®T{
.na
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation
.ad
T}
.TE

New York Area Rocks

Formation Age (years)

Reading Prong >1 billion
Manhattan Prong 400 million
Newark Basin, incl. Stockton, 200 million
Lockatong, and Brunswick
formations

TBL

Coastal Plain On Long Island 30,000 years;
Cretaceous sediments
redeposited by recent
glaciation

Figure 2-6. Table Using Text Blocks
2-19

TBL

2-20

Chapter 3

PIC GRAPHICS LANGUAGE

PAGE

1. Introduction ... 3-1
2. PIC User Manual ... ;. 3-5

3. PIC Reference Manual .. 3-34

Chapter 3

PIC GRAPHICS LANGUAGE

1. Introduction

Pic is a language for drawing simple pictures. It operates as yet
another troff preprocessor, (in the same style as eqn and tbl), with
pictures marked by . PS and . PE. Pic is a procedural language-a
picture is drawn by specifying the motions that one goes through to
draw it.

This document is primarily a user's manual for pic. Part 2 shows
how to use pic in the most simple way. Subsequent parts describe
how to change the sizes of objects when the defaults are
inappropriate, and how to change their positions when the standard
positioning rules are inappropriate. Part 3, Reference Manual,
describes the pic language precisely.

1.1 TROFF Interface

Pic is usually run as a troff preprocessor using a command line as
shown below:

pic [options] file I troff

Run it before eqn and tbl if they are also present.

The command line options to pic are:

-Txxx Output is being prepared for the device xxx. The
default is xxx=aps for the APS-5 phototypesetter.
This is the only phototypesetter currently supported
by device-independent troff. Supported laser
printers are the Imagen 10 (xxx=il0) and the Xerox
9700 (xxx=x97). Any unrecognized value is taken as
the resolution in units per inch of the output device.

3-1

PIC

- D Draw all lines using the "\D" escape sequence of the
device-independent troff formatter. This can be used
to correct problems with characters that do not align
properly when used to draw lines.

-d Sets a debug mode where some useful information is
output with the picture code.

If the . P S line looks like

.PS <file

then the contents of file are inserted in place of the . p s line
(whether or not the file contains. PS or . PE).

Other than this file inclusion facility, pic copies the . p sand . PE

lines from input to output intact, except that it adds two things right
on the same line as the . P S :

.PS h w

Arguments hand ware the picture height and width in units.

If ". PF" is used instead of . PE, the position after printing is
restored to where it was before the picture started, instead of being
at the bottom. ("F" is for "flyback.")

Any input line that begins with a period is assumed to be a troff
command that makes sense at that point; it is copied to the output at
that point in the document. Requests for spaces or changing the line
spacing is not recommended here. They may confuse the pic
preprocessor. Point size and font changes are acceptable. So, for
example,

3-2

PIC

.ps 24
circle radius .4i at 0,0
.ps 12
circle radius .2i at 0,0
.ps 8
circle radius .1 i at 0, a
.ps 6

circle radius .05i at 0,0
.ps 10 \" don't forget to restore size

gives

Point sizes, fonts, and local motions can be modified within quoted
strings (" ... ") in pic, so long as whatever changes are made are
unmade before exiting the string. For example, to print text in italic,
in size 8, use

ellipse "\s8 \fISmi Ie! \fP \sO"

This produces

This is essentially the same rule as applies in eqn.

There is a subtle problem with complicated equations inside pic
pictures-they come out wrong if eqn has to leave extra vertical
space for the equation. If your equation involves more than
subscripts and superscripts, you must add to the beginning of each
equation the extra information space 0:

3-3

PIC

arrow
box "$space 0 {H(omega)} over {1 - H(omega) }$"
arrow

I
H(w)

--;.==-t 1-H (w) ;a

3-4

PIC'

2. PIC User Manual

2.1 Basics

Pic provides boxes, lines, arrows, circles, ellipses, arcs, and splines
(arbitrary smooth curves), plus facilities for positioning and labeling
them. The picture below shows all of the fundamental objects (except
for splines) in their default sizes:

line

8 e
arrow

=-

a~
Each picture begins with. PS and ends with . PE; between them are
commands to describe the picture. Each command is typed on a line
by itself. For exam pIe

.PS
box "this is" "a box"
.PE

creates a standard box (% inch wide, 1h inch high) and centers the
two pieces of text in it:

this is
a box

Each line of text is a separate quoted string. Quotes are mandatory,
even if the text contains no blanks. (Of course there needn't be any
text at all.) Each line will be printed in the current size and font,
centered horizontally, and separated vertically by the current troff
line spacing. Pic does not center the drawing itself.

3-5

PIC

The definitions of the . PS and . PE macros for centering pictures
would be:

.de PS

.if t .sp .3

.in (\\P(.lu-\\$2u)/2u

.ne \ \$1u

.de PE

.in

.if t .sp .6

You can use circle or ellipse in place of box:

Text is centered on lines and arrows; if there is more than one line of
text, the lines are centered above and below:

.PS
arrow "this is" "an arrow"
.PE

produces

and

line "this is" "a line"

gives

this is ...
an arrow

this is
a line

Boxes and lines may be dashed or dotted; just add the word dashed
or dot ted after box or line.

3-6

PIC

Arcs by default turn 90 degrees counterclockwise from the current
direction; you can make them turn clockwise by saying arc cw. So

line; arc; arc cw; arrow

produces

_I
A spline might well do this job better; we will return to that shortly.

As you might guess,

arc; arc; arc; arc

draws a circle, though not very efficiently_

Objects are normally drawn one after another, left to right, and
connected at the obvious places. Thus the input

arrow; box "input"; arrow; box "process"; arrow; box "output"; arrow

produces the figure

~1 input I 1 process I 1 output ~
If you want to leave a space at some place, use move:

box; move; box; move; box

produces

DDD
3-7

PIC

Notice that several commands can be put on a single line if they are
separated by semicolons.

Although objects are normally connected left to right, this can be
changed. If you specify a direction (as a separate object), subsequent
objects will be joined in that direction. Thus

down; box; arrow; ellipse; arrow; circle

produces

and

left; box; arrow; ellipse; arrow; circle

produces

Each new picture begins going to the right.

3-8

PIC

Normally, figures are drawn at a fixed scale, with objects of a
standard size. It is possible, however, to arrange that a figure be
expanded to fit a particular width. If the . PS line contains a
number, the drawing is forced to be that many inches wide, with the
height scaled proportionately. Thus

.PS 3.5i

causes the picture to be 3.5 inches wide.

Pic cannot produce output when the size of text is specified in
relation to the size of boxes, circles, and so on. There is as yet no
way to say "make a box that just fits around this text" or "make this
text fit inside this circle" or "draw a line as long as this text." Tight
fitting of text can generally only be done by trial and error.

If you make a grammatical error in the way you describe a picture,
pic will complain and try to indicate where. For example, the invalid
input

box arrow box

will print the message

pic: syntax error near line 5, file -
context is

box arrow A box

The caret A marks the place where the error was first noted; it
typically follows the word in error.

2.2 Controlling Sizes

This section deals with how to control the sizes of objects when the
"default" sizes are not what is wanted. The next section deals with
positioning them when the default positions are not right.

Each object that pic knows about (boxes, circles, etc.) has associated
dimensions, . like height, width, radius, and so on. By default, pic tries

3-9

PIC

to choose sensible default values for these dimensions, so that simple
pictures can be drawn with a minimum of fuss and bother. All of the
figures and motions shown so far have been in their default sizes.

box
circle
ellipse
arc
line or arrow
move

% " wide X 1f2" high
1f2" diameter
%" wide X Ih" high
1f2" radius
Ih" long
Ih" in the current direction

When necessary, you can make any obj ect any size you want. For
example, the input

box width 3i height O.1i

draws a long, flat box

3 inches wide and 1/10 inch high. There must be no space between
the number and the "i " that indicates a measurement in inches. In
fact, the "i " is optional; all positions and dimensions are taken to be
in inches.

Giving an attribute like width changes only the one instance of the
object. You can also change the default size for all objects of a
particular type, as discussed later.

The attributes of height (which you can abbreviate to ht) and
width (or wid) apply to boxes, circles, ellipses, and to the head on
an arrow. The attributes of radius (or rad) and diameter (or
diam) can be used for circles and arcs if they seem more natural.

Lines and arrows are most easily drawn by specifying the amount of
motion from where one is right now, in terms of directions.
Accordingly the words up, down, left and right and an optional
distance can be attached to 1 ine, arrow, and move. For example,

3-10

.PS
line up 1i right 2i
arrow left 2i
move left 0.1i
line (-) down 1i "height"
.PE

draws

PIC

The notation <- > indicates a two-headed arrow; use - > for a head
on the end and <- for one on the start. Lines and arrows are really
the same thing; in fact, a r r ow is a synonym for 1 i ne - >.

If you don't put any distance after up, down, etc., pic uses the
standard distance. So

line up right; line down; line down left; line up

draws the parallelogram

Warning: a very common error is to say

line 3i

A direction is needed.

3-11

PIC

line right 3i

Boxes and lines may be dotted or dashed:

................ · . · . · .

comes from

box dotted; line dotted; move; line dashed

If there is a number after dot, the dots will be that far apart. You
can also control the size of the dashes (at least somewhat): if there is
a length after the word dashed, the dashes will be that long, and
the intervening spaces will be as close as possible to that size. So, for
instance,

comes from the inputs (as separate pictures)

line right 4.Si dashed
line right 4.Si dashed O.2Si
line right 4.Si dashed O.Si
line right 4.Si dashed 1i

Circles and arcs cannot be dotted or dashed.

You can make any object invisible by adding the word
in vis (i b 1 e) after it. This is particularly useful for positioning
things correctly near text, as we will see later.

3-12

Text may be positioned on lines and arrows:

.PS
arrow "on top
arrow "above"
arrow "above"
arrow "below"
arrow "above"
.PE

produces

OR t8f)8i

of"; move
"below"; move
above; move
below; move
"on top of" "below"

above
beloW=-

above
:;.

beloW=-

PIC

above
OR t8f) M

below

The "width" of an arrowhead is the distance across its tail; the
"height" is the distance along the shaft. The arrowheads in this
picture are default size.

As we said earlier, arcs go 90 degrees counterclockwise from where
you are right now, and arc cw changes this to clockwise. The
default radius is the same as for circles, but you can change it with
the rad attribute. It is also easy to draw arcs between specific
places; this will be described in the next section.

To put an arrowhead on an arc, use one of <-, - > or <- >.

In all cases, unless an explicit dimension for some object is specified,
you will get the default size. If you want an object to have the same
size as the previous one of that kind, add the word same. Thus in
the set of boxes given by

down; box ht O.2i wid 1.5i; move down O.15i
box same; move same; box same

3-13

PIC

the dimensions set by the first box are used several times; similarly,
the amount of motion for the second move is the same as for the
first one.

It is possible to change the default sizes of objects by assigning
values to certain variables:

boxwid, boxht
linewid, lineht
dashwid
circlerad
arcrad
ellipsewid, ellipseht
movewid, moveht
arrowwid, arrowht (These refer to the arrowhead.)

So if you want all your boxes to be long and skinny, and relatively
close together,

boxwid = O.1i; boxht = 1i
movewid = O.2i
box; move; box; move; box

gives

Pic works internally in what it thinks are inches. Setting the
variable scale to some value causes all dimensions to be scaled
down by that value. Thus, for example, scale=2. 54 causes
dimensions to be interpreted as centimeters.

The number given as a width in the . PS line overrides the
dimensions given in the picture; this can be used to force a picture to
a particular size even when coordinates have been given in inches.

3-14

PIC

Experience indicates that the easiest way to get a picture of the right
size is to enter its dimensions in inches, then if necessary add a width
to the . P S line.

2.3 Controlling Positions

You can place things anywhere you want; pic provides a variety of
ways to talk about places. pic uses a standard Cartesian coordinate
system, so any point or object has an x and y position. The first
object is placed with its start at position 0,0 by default. The X,y
position of a box, circle or ellipse is its geometrical center; the
position of a line or motion is its beginning; the position of an arc is
the center of the corresponding circle.

Position modifiers like from, to, by and at are followed by an x,Y
pair, and can be attached to boxes, circles, lines, motions, and so on,
to specify or modify a position.

You can also use up, down, right, and left with line and
move. Thus

.PS 2
box ht 0.2 wid 0.2 at 0,0 "1"
move to 0.5,0 # or "move right 0.5"
box "2" same
move same
box "3" same
.PE

use same dimensions as last box
use same motion as before

draws three boxes, like this:

Note the u~e of s arne to repeat the previous dimensions instead of
reverting to the default values.

Comments can be used in pictures; they begin with a f# and end at
the end of the line.

3-15

PIC

Attributes like ht and wid and positions like at can be written out
in any order. So

box ht 0.2 wid 0.2 at 0,0
box at 0,0 wid 0.2 ht 0.2
box ht 0.2 at 0,0 wid 0.2

are all equivalent, though the last is harder to read and thus less
desirable.

The from and to attributes are particularly useful with arcs, to
specify the endpoints. By default, arcs are drawn counterclockwise,

arc from O.Si,O to O,O.Si

is the short arc and

arc from O,O.Si to O.Si,O

is the long one:

If the from attribute is omitted, the arc starts where you are now
and goes to the point given by to. The radius can be made large to
provide flat arcs:

arc -) cw from 0,0 to 2i,0 rad 1Si

produces

3-16

PIC

We said earlier that objects are normally connected left to right.
This is an over-simplification. The truth is that objects are
connected together in the direction specified by the most recent up,
down, left or right (either alone or as part of some object).
Thus, in

arrow left; box; arrow; circle; arrow

the left implies connection towards the left:

This could also be written as

left; arrow; box; arrow; circle; arrow

Objects are joined in the order determined by the last up, down,
etc., with the entry point of the second object attached to the exit
point of the first. Entry and exit points for boxes, circles and ellipses
are on opposite sides, and the start and end of lines, motions and
arcs. It's not entirely clear that this automatic connection and
direction selection is the right design, but it seems to simplify many
examples.

If a set of commands is enclosed in braces { ... }, the current
position and direction of motion when the group is finished will be
exactly where it was when entered. Nothing else is restored. There
is also a more general way to group objects, using [and], which is
discussed in a later section.

2.4 Labels and Corners

Objects can be labelled or named so that you can talk about them
later.

3-17

PIC

For example,

.PS
Box1 :

.PE

box
... other stuff
move to Box1

Place names have to begin with an upper case letter (to distinguish
them from variables, which begin with lower case letters). The name
refers to the "center" of the object, which is the geometric center for
most things. It's the beginning for lines and motions.

Other combinations also work:

line from Box1 to Box2
move to Box1 up O. 1 right 0.2
move to Box1 + 0.2,0.1 # same as previous
line to Box1 - 0.5,0

The reserved name Here may be used to record the current position
of some object, for example as

Box1: Here

Labels are variables - they can be reset several times in a single
picture, so a line of the form

Box 1 : Box 1 + 1 i , 1 i

is perfectly legal.

You can also refer to previously drawn objects of each type, using the
word last. For example, given the input

box "A": circle "B": box "e"

then 'last box' refers to box C, 'last circle' refers to circle B,

3-18

PIC

and '2nd last box' refers to box A. Numbering of objects can also
be done from the beginning, so boxes A and Care' 1 st box' and
'2nd box' respectively.

To cut down the need for explicit coordinates, most objects have
"corners" named by compass points:

B B.n B .nw .--------------, .ne

B.w B.c B.e

B.sw L.----..,..B::-----~ B.se
.s

The primary compass points may also be written as . r, . b, . 1, and
. t, for right, bottom, left, and top. The box above was produced
with

.PS 1. 5

B: box "B.e"
" B.e" at B.e ljust
" B.ne" at B.ne ljust
" B.se" at B.se ljust
"B.s" at B.s below
"B.n" at B.n above
"B.sw " at B.sw rjust
"B.w " at B.w rjust
"B.nw " at B.nw rjust
.PE

Note the use of 1 just, rjust, above, and below to alter the
default positioning of text, and of a blank with some strings to help
space them away from a vertical line.

Lines and arrows have a start, an end and a center in addition to
corners. (Arcs have only a center, a start, and an end.) There are a
host of (Le., too many) ways to talk about the corners of an object.
Besides the compass points, almost any sensible combination of
left, right, top, bottom, upper and lower will work.
Furthermore, if you don't like the' . ' notation, as in

3-19

PIC

last box.ne

you can instead say

upper right of last box

A longer statement like

line from upper left of 2nd last box to bottom of 3rd last ellipse

begins to wear after a while, but it is descriptive.

It is sometimes easiest to position objects by positioning some part of
one at some part of another, for example the northwest corner of one
at the southeast corner of another. The wi th attribute in pic
permits this kind of positioning. For example,

box ht O.7Si wid O.7Si
box ht O.Si wid O.Si with .sw at last box.se

produces

Notice that the corner after wi th is written. sw.

As another example, consider

ellipse; ellipse with .nw at last ellipse.se

which makes

3-20

PIC

Sometimes it is desirable to have a line intersect a circle at a point
which is not one of the eight compass points that pic knows about.
In such cases, the proper visual effect can be obtained by using the
attribute chop to chop off part of the line.

circle "a"
circle "b" at 1st circle - <O.7Si, 1i)
circle "en at 1st circle + <O.75i, -H)

line from 1st circle to 2nd circle chop
line from 1st circle to 3rd circle chop

produces

By default the line is chopped by circlerad at each end. This may
be changed:

line ... chop r

chops both ends by r, and

line ... chop rl chop r2

chops the beginning by r 1 and the end by r2.

3-21

PIC

There is one other form of positioning that is sometimes useful, to
refer to a point some fraction of the way between two other points.
This can be expressed in pic as

fraction of the way between positionl and position2

fraction is any expression, and positionl and position2 are any
positions. You can abbreviate this phrase; "of the way" is optional,
and the whole thing can be written instead as

fraction < positionl , position2 >

As an exam pIe,

box
arrow right from 1/3 of the way between last box.ne and last box.se
arrow right from 2/3 <last box.ne, last box.se>

produces

:
Naturally, the distance given by fraction can be greater than 1 or
less than o.

2.5 Variables and Expressions

It's generally a bad idea to write everything in absolute coordinates if
you are likely to change things. pic variables let you parameterize
your picture:

a = 0.5: b = 1

box wid a ht b
ellipse wid a/2 ht 1.5*b
move to Box1 - (a/2, b/2)

3-22

PIC

Expressions may use the standard operators +, - *, /, and %, and
parentheses for grouping.

Probably the most important variables are the predefined ones for
controlling the default sizes of objects, listed in Section 3. These may
be set at any time in any picture, and retain their values until reset.

You can use the height, width, radius, and x and y coordinates of any
object or corner in an expression:

Box1.x
Box1.ne.y
Box1.wid
Box 1.ht

It the x coordinate of Box 1
It the y coordinate of the NE corner of Box1
It the width of Box1
It and its height

2nd last circle.rad It the radius of the 2nd last circle

Any pair of expressions enclosed in parentheses defines a position;
furthermore such positions can be added or subtracted to yield new
positions:

are positions, then

refers to the point

(p l.x ,p 2.y)

2.6 More on Text

Normally, text is centered at the geometric center of the object it is
associated with. The attribute ljust causes the left end to be at
the specified point (which means that the text lies to the right of the
specified place!), and rjust puts the right end at the place. above
and below cen'ter the text one half line space in the given direction.

At the moment you can not compound text attributes. It is illegal to
say " " above ljust.

3-23

PIC

Text is most often an attribute of some other object, but you can also
have self-standing text:

"this is some text" at 1,2 ljust

2.7 Lines and Splines

A "line" may actually be a path, that is, it may consist of connected
segments like this:

This line was produced by

line right 1i then down .5i left 1i then right 1i

A spline is a smooth curve guided by a set of straight lines just like
the line above. It begins at the same place, ends at the same place,
and in between is tangent to the mid-point of each guiding line. The
syntax for a spline is identical to a (path) line except for using
spl ine instead of 1 ine. Thus:

line dashed right 1i then down .5i left 1i then right 1i
spline from start of last line \

right 1i then down .5i left 1i then right 1i

produces

(Long input lines can be split by ending each piece with a backslash.)

The elements of a path, whether for line or spline, are specified as a
series of points, either in absolute terms or by up, down, etc. If
necessary to disambiguate, the word then can be used to separate
components, as in

3-24

PIC

spline right then up then left then up

which is not the same as

spline right up left up

At the moment, arrowheads may only be put on the ends of a line or
spline; splines may not be dotted or dashed.

2.8 Blocks

Any sequence of pic statements may be enclosed in brackets [...]
to form a block, which can then be treated as a single object, and
manipulated rather like an ordinary box. For example, if we say

box "1"
[box "2"~ arrow "3" above~ box "4"] with .n at last box.s - (0,0.1)
"thing" at last [].s

we get

D
2 I th:n;1 4

Notice that "last" -type constructs treat blocks as a unit and don't
look inside for objects: "last box. s" refers to box 1, not box 2 or 4.
You can use last [], etc., just like last box.

Blocks have the same compass corners as boxes (determined by the
bounding box). It is also possible to position a block by placing either
an absolute coordinate (like 0, 0) or an internal label (like A) at
some external point, as in

[... ; A: •.. ~ ..•] with .A at ...

3-25

PIC

Blocks join with other things like boxes do (Le., at the center of the
appropriate side).

Names of variables and places within a block are local to that block,
and thus do not affect variables and places of the same name outside.
You can get at the internal place names with constructs like

last [1.A

or

B.A

where B is a name attached to a block like so:

B : [••• ; A: ••• ;

When combined with def ine statements (next section), blocks
provide a reasonable simulation of a procedure mechanism.

Although blocks nest, it is currently possible to look only one level
deep with constructs like B. A, although A may be further qualified
(Le., B.A.sw or top of B.A are legal).

The following example illustrates most of the points made above
about how blocks work.

3-26

h = .5i
dh .02i
dw .1i
[

Ptr:
boxht h; boxwid dw
A: box
B: box
C: box
box wid 2*boxwid "
D: box

Block: [
boxht 2*dw; boxwid
movewid = 2*dh
A: box; move
B: box; move
C: box; move
box invis " ... " wid 2*boxwid; move
D: box

with .t at Ptr.s - (O,h/2)
arrow from Ptr.A to Block.A.nw
arrow from Ptr.B to Block.B.nw
arrow from Ptr.C to Block.C.nw
arrow from Ptr.D to Block.D.nw

box dashed ht last [I.ht+dw wid last [I .wid+dw at last [I

This produces

2.9 Macros

r--------------,
I
I
I
I
I
I
I

PIC

Pic provides a rudimentary macro facility, the simple form of which
is identical to that in eqn:

def ine name X replacement text x

3-27

PIC

defines name to be the replacement text; x is any character that
does not(appear in the replacement. Any subsequent occurrence of
name will be replaced by replacement text.

Macros with arguments are also available. The replacement text of a
macro definition may contain occurrences of $1 through $9; these
will be replaced by the corresponding actual arguments when the
macro is invoked. The invocation for a macro with arguments is

name(arg1, arg2, ...)

Non-existent arguments are replaced by null strings.

As an example, one might define a square by

define square X box ht $1 wid $1 $2 X

Then

square(1i, "one" "inch")

calls for a one-inch square with the obvious label, and

square(O.5i)

calls for a square with no label:

one
inch

Coordinates like x,y may be enclosed in parentheses, as in (x,y), so
they can be included in a macro argument.

3-28

2.10 Some Examples

Here are a few larger examples:

hashtab:

The input for the picture above was:

define ndblock X
box wid boxwid/2 ht boxht/2
down; box same with .t at bottom of last box;

X
boxht •• 2i; boxwid •. 3i; circlerad •. 3i
down; box; box; box; box ht 3*boxht. .

box same

L: box; box; box invis wid 2*boxwid "hashtab:" with .e at 1st box .w
right
start: box wid .5i with .sw at 1st box.ne + (.4i,.2i) "
N1: box wid .2i "n1"; D1: box wid .3i "d1"
N3: box wid .4i "n3"; D3: box wid .3i "d3"
box wid .4i "
N2: box wid .5i "n2"; D2: box wid .2i "d2"
arrow right from 2nd box
ndblock
spline -) right .2i from 3rd
spline -) right .3i from 2nd
arrow iight from last box
ndblock

last
last

box then
box then

to N1.sw + (0.05i,0)
to D1.sw + (0.05i,0)

PIC

spline -) right .2i from 3rd
spline -) right .3i from 2nd
arrow right 2*linewid from L
ndblock

last box to N2. sw- (0.05 i , .2 i) to N2.sw+(O.05i,0)
last box to D2.sw-<0.05i,.2i)

spline -) right .2i from 3rd last box to N3.sw + (0.05i,0)
spline -) right .3i from 2nd last box to D3.sw + (0.05i,0)
circle invis "ndblock" at last box.e + (.7i,.2i)
arrow dotted from ~ast circle to last box chop
box invis wid 2*boxwid "ndtable:" with .e at start.w

The second example follows.

to D2.sw+<O.05i,0)

3-29

PIC

diagnostic
symbol

= -== message - - table
printer

'I'

lexical syntactic

corrector corrector

I' I'

II

source ---"'" lexical tokens intermediate semantic , parser
code checker code analyzer

This input will generate a picture something like the above:

3-30

.PS 6

.ps 8
arrow "source" "code"

LA: box "lexical" "analyzer"
arrow "tokens" above

P: box "parser"
arrow "intermediate" "code"

Sem: box "semantic" "checker"
arrow

arrow <-) up from top of LA
LC: box "lexical" "corrector"

arrow <-) up from top of P
Syn: box "syntactic" "corrector"

arrow up
DMP: box "diagnostic" "message" "printer"

arrow <-) right from right of DMP
ST: box "symbol" "table"

.PE

arrow from Le.ne to DMP.sw
arrow from Sem.nw to DMP.se
arrow <-) from Sem.top to ST.bot

PIC

There are eighteen objects (boxes and arrows) in the second example,
and one line of pic input for each; this seems like an acceptable level
of verbosity.

The next example is the following:

3-31

PIC

3-32

input

CPU
(16-bit mini) CRT

Basic Digital Typesetter

00 rollers

.... pape:

This input will generate a picture like that in example 3:

.PS 5
circle "DISK"
arrow "character" "defns"
box "CPU" "(16-bit mini)"
{arrow (- from top of last box up "input " rjust }
arrow
CRT:" CRT" ljust
line from CRT - 0,0.075 up 0.15 \
then right 0.5 \
then right 0.5 up 0.25 \
then down 0.5+0.15 \
then left 0.5 up 0.25 \
then left 0.5

Paper: CRT + 1.0+0.05,0
arrow from Paper + 0,0.75 to Paper - 0,0.5
{move to start of last arrow down 0.25

{ move left 0.015; circle rad 0.05 }
{ move right 0.015; circle rad 0.05;" rollers" ljust

paper" ljust at end of last arrow right 0.25 up 0.25
line left 0.2 dotted
.PE
.ce
Basic Digital Typesetter

PIC

3-33

PIC

3. PIC Reference Manual

3.1 Pictures

The top-level object in pic is the "picture":

picture:
• PS optional-width
element-list
.PE

If optional-width is present, the picture is made that many inches
wide, regardless of any dimensions used internally. The height is
scaled in the same proportion.

If instead the llne is

• PS <f

the file f is inserted in place of the . P S line.

If . PF is used instead of . PE, the position after printing is restored
to what it was upon entry.

3.2 Elements

An element-list is a list of elements. The elements are

element:
primitive attribute-list
placename: element
placename: position
variable = expression
direction
troil-command
{ element-list }
[element-list]

Elements in a list must be separated by newlines or semicolons; a
long element may be continued by ending the line with a backslash.

3-34

PIC

Comments are introduced by a # and terminated by a newline.

Variable names begin with a lower case letter; place names begin
with upper case. Place and variable names retain their values from
one picture to the next.

The current position and direction of motion are saved upon entry to
a { ... } block and restored upon exit.

Elements within a block enclosed in [...] are treated as a unit; the
dimensions are determined by the extreme points of the contained
objects. Names, variables, and direction of motion within a block are
local to that block.

The troll-command is any line that begins with a period. Such lines
are assumed to make sense in the context where they appear.

3.3 Primitives

The primitive objects are

primitive:
box
circle
ellipse
arc
line
arrow
move
spline
"any text at all"

arrow is a synonym for 1 ine - >.

3.4 Attributes

An attribute-Jist is a sequence of zero or more attributes; each
attribute consists of a keyword, perhaps followed by a value. In the
following, e is an expression and opt-e an optional expression.

3-35

PIC

attribute:
h(eigh)t e
rad(ius) e
up opt-e
right opt-e
from position
at position
bye, e
dot ted opt-e
chop opt-e
same
text-list

wid(th) e
diam(eter) e
down opt-e
left opt-e
to position
with corner
then
dashed opt-e
- > <- <- >
invis

Missing attributes and values are filled in from defaults. Not all
attributes make sense for all primitives; irrelevant ones are silently
ignored.

3-36

These are the currently meaningful attributes:

box:
height, width, at, dotted, dashed, invis, same, text

circle and ellipse:
radius, diameter, height, width, at, invis, same, text

arc:

PIC

up, down, left, right, height, width, from, to, at, radius,
invis, same, cw, <-, ->, <->, text

line,arrow
up, down, left, right, height, width, from, to, by, then,
dotted, dashed, invis, same, <-, - >, <- >, text

spline:
up, down, left, right, height, width, from, to, by, then,
invis, <-, ->, <->, text

move:
up, down, left, right, to, by, same, wxt

"text ... " :
at, text

The attribute a t implies placing the geometrical center at the
specified place. For lines, splines and arcs, height and width
refer to arrowhead size.

3.5 Text

Text is normally an attribute of some primitive; by default it is
placed at the geometrical center of the object. Stand-alone text is
also permitted. A text-Jist is a list of text items; a text item is a
quoted string optionally followed by a positioning request:

text-item:

" center
" ljust
" rjust
" above
" below

If there are multiple text items for some primitive, they are centered
vertically except as qualified. Positioning requests apply to each item
independen tly.

3-37

PIC

Text items can contain troff commands for size and font changes,
local motions, etc., but make sure that these are balanced so that the
entering state is restored before exiting.

3.6 Positions and Places

A position is ultimately an x,y coordinate pair, but it may be
specified in other ways.

position:
e, e
place ± e, e
(position, position
e [of the way J between position and position
e < position , position >

The pair e, e may be enclosed in parentheses.

place:
placename optional-corner
corner placename
Here
corner of nth primitive
nth primitive optional-corner

A corner is one of the eight compass points or the center or the start
or end of a primitive. (Not text!)

corner:
.n .e .w .s .ne .se .nw .sw
.t .b .r .1

.c .start .end

Each object in a picture has an ordinal number; nth refers to this.

nth:
n&h
nth last

Legal input includes 1th, as well as synonyms like 1st and 3st.

3-38

3.7 Variables

The built-in variables and their default values are:

boxwid O.7Si
circlerad O.2Si
ellipsewid O.7Si
arcrad O.2Si
linewid O.Si
movewid O.Si
arrowht O.1i
dashwid O.1i
scale 1

boxht O.Si

ellipseht O.Si

lineht O.Si
movewid O.Si
arrowwid O.05i

.' PIC

These may be changed at any time, and the new values remain in
force until changed again. Dimensions are divided by scale during
output.

3.8 Expressions

Expressions in pic are evaluated in floating point. All numbers
representing dimensions are taken to be in inches.

expression:
e + e
e - e
e * e
e / e
e % e (modulus)
- e
(e
variable
number
place. x
place. y

place .ht
place .wid
place. rad

3-39

PIC

3.9 Definitions

The def ine statement is not part of the grammar.

define:

def ine name x replacement text x

Occurrences of $ 1 through $ 9 in the replacement text will be
replaced by the corresponding arguments if name is invoked as

name (argl, arg2, ...)

Non-existent arguments are replaced by null strings. Replacement
text may contain newlines.

3-40

Chapter 4

MATHEMATICS TYPESETTING PROGRAM

PAGE

1. Introduction ... 4-1

2. Usage... 4-2

3. Language.. 4-3

4. User's Guide. 4-5

5. Troubleshooting.. 4-28

Chapter 4

MATHEMATICS TYPESETTING
PROGRAM

1. Introduction

Mathematical text is known in the publishing trade as "penalty copy"
because it is slower, more difficult, and more expensive to set in type
than any other kind of copy normally occurring in books and
journals .

• One difficulty is the multiplicity of characters, sizes, and fonts.
Many mathematical expressions require an intimate mixture of
Roman, italic, and Greek letters (in three sizes) and a number ol
special characters. Typesetting such expressions by traditional
methods is essentially a manual operation .

• A second difficulty is the 2-dimensional character of
mathematics. This is illustrated by the following example which
shows line-drawing, built-up characters (such as braces and
radicals), and a spectrum of positioning problems:

1 Va emx _f15
--~ log -=:---____
2m Van Va emx +V5

J dx
ae mx -be -mx

1 1 Va --- tanh- (_e mx)
m VaD V5

-1 1 Va --- coth- (_e mx)
m VaD V5

The eqn software for typesetting mathematics has been designed to
be easy to learn and to use by people (for example, secretaries and
mathematical typists) who know neither mathematics nor
typesetting. The language can be learned in an hour or so since it
has few rules and fewer exceptions. It interfaces directly with the
phototypesetting language so mathematical expressions can be
embedded in the running text of a manuscript, and the entire
document produced in one process. Typical mathematical expressions
include size and font changes, positioning, line drawing, and other

4-1

EQN

necessary functions to print according to mathematical conventions,
and are done automatically. The syntax of the language is specified
by a small context-free grammar; a compiler-compiler is used to
make a compiler that translates this language into typesetting
commands. Output may be produced on either a typesetter or on a
terminal with forward and reverse half-line motions.

2. Usage

On the UNIX system, the typesetter is driven by a text formatting
program, troff, which was designed for typesetting text. Facilities
needed for printing mathematical expressions, such as arbitrary
horizontal and vertical motions, line drawing, and font size changing
are also provided. Syntax for describing these special operations is
difficult to learn and difficult even for experienced users to type
correctly. For this reason, the troff formatter is used as an
assembly language by the eqn program which describes and compiles
mathematical expressions.

To typeset mathematical text stored in files, the following command
is issued:

eqn files: troff

The vertical bar connects the output of one eqn process to the input
of another troff process. Any troff formatter options are located'
following the troff formatter part of the command. For example:

eqn files: troff -mm

Eqn can also be used on devices which have half-line forward and
reverse capabilities. Input language is identical, but neqn and the
nroff formatter are used instead of eqn and the troff formatter.
Some things will not look as good. because terminals do not provide
the variety of characters, sizes, and fonts that a typesetter does, but
the output is usually adequate for proofreading.

4-2

EQN

To use a specific terminal as the output device, the following
command is used:

neqn files I nroff -Tx

where x is the terminal type being used, such as 300 or 3008.

The eqn and neqn programs can be used with the tbl program for
typesetting tables that contain mathematics

tbl files I eqn I troff
tbl files I neqn I nroff

Missing delimiters and some equation errors can be detected early
with program aids. Using these troubleshooting devices described in
paragraph 5 should be considered as an initial step in formatting a
document.

3. Language

3.1 Design

The fundamental principle upon which the eqn language design is
based is that the language should be easy to use by those who know
neither mathematics nor typesetting. This principle implies:

• Normal mathematical conventions about operator precedence,
such as parentheses, cannot be used. To give special meaning to
such characters means that the user has to understand what is
being typed. The language should not assume that parentheses
are always balanced .

• There should be few rules, keywords, special symbols, and
opera tors. This keeps the language easy to learn and remember.
Furthermore, there should be few exceptions to the rules that do
exist. If something works in one situation, it should work
everywhere. If a variable can have a subscript, then a subscript
can have a subscript, etc., without limit.

4-3

EQN

• Standard things should happen automatically. When "x=y+z+ 1"
is typed, "x=y+z+ 1" should be the result. Subscripts and
superscripts should be printed automatically (with no special
intervention) in appropriately smaller size. Fraction bars should
be made the right length and positioned at the correct height. A
mechanism for overriding default actions should exist, but its
application is the exception, not the rule.

A secondary, but still important, design goal is that the system
should be easy to build and to change. To this end and to guarantee
regularity, the language is defined by a context-free grammar.

The typist should have a reasonable picture (a 2-dimensional
representation) of the desired final form, such as might be
handwritten by the author of a paper. It is also assumed that the
input is to be typed on a computer terminal much like an ordinary
typewriter. This implies an input alphabet of perhaps 100 characters,
none of them special.

The troff processor performs work for the mathematics typesetting
function. It is a powerful program, with a macro facility, text and
arithmetic variables, numerical computation and testing, and
conditional branching. Text strings are passed to the troff formatter
omitting the need for a separate storage management package. The
user need not be concerned with most details of the particular device
and character set currently in use. For example, the troff formatter
computes the widths of all strings of characters; the user does not
need to know about them.

3.2 Structure

The basic structure of the language is not original. Equations are
pictured as a set of boxes, pieced together in various ways. For
example, something with a subscript is a box followed by another box
moved downward and shrunk an appropriate amount. A fraction is a
box centered above another box, at the right altitude, with a line of
correct length drawn between them.

4-4

EQN

3.3 Mode of Operation

Since the eqn program is useful for typesetting mathematics only, it
interfaces with the underlying typesetting language in order to get
intermingled mathematics and text. The standard mode of operation
is that when a document is typed, mathematical expressions are
input as part of the text but marked by delimiters, .EQ and .EN.
The program reads this input and treats as comments those things
which are not mathematics passing them through untouched. At the
same time, it converts mathematical inputs into troff formatter
commands. The resulting output is passed directly to the formatter
where comments and mathematical parts become text and/or
formatter commands.

4. User's Guide

4.1 Delimiters

The eqn preprocessor reads intermixed text and equations and passes
its output to the troff formatter. Since the formatter uses lines
beginning with a period as control words (.ce means "center the next
output line"), eqn uses the .EQ macro to mark the beginning of an
equation and the .EN macro to mark the end. By default .EQ and
.EN are ignored by the troff formatter, so equations are printed in­
line.

The .EQ and .EN macros can be supplemented by troff commands as
desired. A centered display equation can be produced with the input

.ce

.EQ
x sub i = y sub i ...
. EN

The .EQ and .EN delimiters are passed through to the formatter
untouched, so they can be used to center equations, number them
automatically, etc. The troff and nroff formatter macro package,
-mm, allows equations to be left-justified and numbered. Any
argument to the .EQ macro will be placed at the right margin as an
equation number.

4-5

EQN

Warning: When using the -mm macro package,
always use a break-producing request such as .br or
.sp immediately before the .EQ macro.

For example, the input

.EQ(4.1a)
x = f(y/2) + y/2
.EN

produces the output

x=f (y 12)+y 12 (4.1a)

Since it is tedious to type .EQ and .EN around very short expressions
(e.g., single letters), two characters can be defined to serve as the left
and right delimiters of expressions. These characters are recognized
anywhere in subsequent text {4.16}.

4.2 Spaces and New Lines

4.2.1 Input Spaces

Input is free form. Space and newline characters in the input are.
used by eqn to separate pieces of the input; they are not used to
create space in the output.

Thus an input

x Y
+z+l

produces

x=y+z+l

Free-form input is easier to type initially. Space and newline

4-6

EQN

characters should be freely used to make input equations readable
and easy to edit. Very long lines are hard to correct if a mistake is
made.

4.2.2 Output Spaces

Extra white space can be forced into the output by several characters
of various sizes. A tilde (-) gives a space equal to the normal word
spacing in text, a circumflex (~) gives half this much, and a tab
character spaces to the next tab stop (tab stops must be set by troff
commands). Spaces, tildes, circumflexes, and tabs also serve to
delimit pieces of input. For example:

produces

x =y + z

4.3 Symbols, Special Names, and Greek Alphabet

Mathematical symbols, mathematical names, and the Greek alphabet
are known by eqn. For example:

x=2 pi int sin (omega t)dt

produces

x=27r J sin(wt)dt

Spaces in the input are necessary to indicate that sin, pi, int, and
omega are separate entities and should get special treatment. The
eqn program looks up each string of characters in a table, and if
found, gives it a translation. Digits, parentheses, brackets,
punctuation marks, and the following mathematical words are

4-7

EQN

converted to Roman font:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re 1m and if for det

In the previous example, pi and omega become their Greek
equivalents (7r and w), int becomes the integral sign (which is moved
down and enlarged), and sin is output in Roman font, following
conventional mathematical practice. Parentheses, digits, and
operators are output in Roman font.

Spaces should be put around separate parts of the input. A common
error is to type "f(pi)" without leaving spaces on both sides of the
"pi". As a result, eqn does not recognize pi as a special word, and it
in the output. A list of eqn names appears in Figure 4-1.

4-8

EQN

INPUT OUTPUT
NAME CHARACTER

>= ;;:::

<= .:5:

-

!= ~

+- ±
- > ~

<- ~

« «
» »
inf 00

partial a
half 112
prime

approx ~

nothing

edot

times X

del V-
grad V-

, ... ,
sum ~
int I
prod IT
union U
inter n
DELTA Ll
GAMMA r
LAMBDA A
OMEGA Q

Figure 4-1. Names Recognized by eqn (Sheet 1 of 2)

4-9

EQN

INPUT OUTPUT
NAME CHARACTER

PHI <I>
PI IT
PSI 'It
SIGMA ~

THETA e
UPSILON l'
XI Z
alpha a
beta {3
chi X
delta 0
epsilon e
eta 11
gamma 'Y
iota

kappa x

lambda A
mu J.1
nu v
omega w
omicron 0

phi 4>
pi 7r

psi l/;
rho p

sigma (J

tau T

theta ()

upsilon v
xi ~
zeta r

Figure 4-2. Names Recognized by eqn (Sheet 2 of 2)

4-10

EQN

Four-character troff names can also be used for anything eqn does
not recognize, e.g., ',\(pl" for the + sign.

The only way eqn can deduce that some sequence of letters may be
special is if that sequence is separated from the letters on either side
of it. This can be done by surrounding a special word by ordinary
space, tab, or newline characters. Special words can also be made to
stand out by surrounding them with tildes or circumflexes, e.g.:

is much the same as the previous example, except tildes separate
words like sin, omega, etc., and also add an extra space per tilde. The
output of this example is:

x = 2 7r J sin (w t) dt

4.4 Subscripts and Superscripts

Subscripts and superscripts are introduced by the keywords "sub"
and "sup":

is produced by

x sup 2 + y sub k

The eqn program takes care of all size changes and vertical motions
needed to make the hard copy look right. The words "sub" and "sup"
must be surrounded by spaces. A space or tilde is used to mark the
end of a subscript or superscript. Return to the original base line is
automatic.

Multiple levels of subscripts or superscripts are allowed. Subscripted
subscripts and superscripted superscripts such as:

4-11

EQN

x sub i sub 1

produce

A subscript and superscript on the same thing are printed one above
the other if the subscript comes first.

x sub i sup 2

is

Other than this special case, "sub" and "sup" group to the right

x sup y sub z

generates

not

x y
z

A common erroneous expression is of the form

y = (x sup 2)+1

which causes

Y=(X 2)+1

4-12

EQN

instead of the intended

The error is in omitting a delimiting space. The correct input
expression is

y = (x sup 2) + 1

4.5 Braces

Complicated expressions can be formed by using braces ({}) to keep
objects together in unambiguous groups. Braces indicate what goes
over what or what terms are to be grouped before applying another
mathematical function.

Normally, the end of a subscript or superscript is marked by a space,
tilde, circumflex, or tab. If the subscript or superscript is something
that has to be typed with spaces in it, braces are used to mark the
beginning and end. The input

e sup {i omega t}

produces

Braces can be used to force eqn to treat something as a unit or just
to make the intent perfectly clear.

Braces can occur within braces if necessary. The statement

e sup {i pi sup {rho +1}}

generates

4-13

EQN

A general rule is that an arbitrarily complicated string enclosed in
braces can be used in place of a single character (such as x). The
eqn program administers formatting details. In all cases, the correct
number of braces must be used. Omitting one or adding an extra one
causes eqn to complain.

The braces convention is an example of the power of using a
recursive grammar to define the language. It is part of the language
dictates that if a construct can appear in some context then any
expression within braces can also occur in that context.

4.6 Fractions

Fractions are specified with the keyword over.

a+b over c+d+e = 1

produces

a+b
1

c+d+e

The line is made the correct length and positioned automatically.
When there is both an "over" and a "sup" in the same expression,
eqn performs the "sup" first.

-b sup 2 over pi

is

4-14

EQN

4.7 Square Roots

There is a sqrt operator for making square roots of the appropriate
size.

x = {-b +- sqrt{b sup 2 -4ac}} over 2a

yields

x
-b ± Vf)Z~ac

2a

Note: Since large radicals look poor on some typesetters, sqrt is not
recommended for tall expressions.

4.8 Summations, Integrals, and Similar Constructions

Summations, integrals, and similar constructions are easy.

sum from i=O to {i= inf} x sup i

produces

Braces indicate where the upper part (i= inf) begins and ends.
None are necessary for the lower part (i=O) because it contains no
spaces. Braces will never hurt; but if the "from" and "to" parts
contain any spaces, braces must be put around them.

The "from" and "to" parts of the construction are optional; but if
both are used, they have to occur in that order.

Other useful characters can replace the sum in the above example.
They are

4-15

EQN

int

prod

union

inter

which become, respectively

J
II
U
n

Since characters before the "from" can be anything, even something
in braces, "from-to" can often be used in unexpected ways.

lim from {n -> inf} x sub n =0

IS

lim Xn =0
n--x

4.9 Size and Font Changes

Although eqn makes an attempt to use correct sizes and fonts, there
are times when default assumptions are not what is wanted. Slides
and transparencies often require larger characters than normal text.
Thus size and font changing commands are also provided. By default,
equations are set in 10-point type with standard mathematical
conventions to determine what characters are in Roman and italic
font. Size and font changes are made with size n and roman, italic,
bold, or fat operations. As with the "sub" and "sup" keywords, size
and font changes affect only the string that follows and revert to the
normal situation afterward. Thus:

bold x y

4-16

EQN

is

xy

Braces can be used if something more complicated than a single
letter is to be affected.

bold {x y} z

produces

xyz

If fonts other than Roman, italic, and bold are to be used, the font X
statement (X is a I-character troff name or number for the font) can
be used. Since eqn is tuned for Roman, italic, and bold fonts, other
fonts may not give as good an appearance.

The fat operation takes the current font and widens it by
overstriking. For instance:

A = fat {pi r sup 2}

produces

Legal sizes which may follow size are

~ ~ ~ 9, 1~ 11, 12, 14, 1~ 1~ 2~ 2~ 24,2~ 36.

The size can also be changed by a given amount. For example:

size +2

makes the size two points larger. This has the advantage that

4-17

EQN

knowledge of the current size is not necessary.

If an entire document is to be in a nonstandard size or font, it is a
nuisance to write out a size and font change for each equation.
Accordingly, a global size or font can be set that thereafter affects all
equations. The following statements would appear at the beginning
of any equation to set the size to 16 and the font to Roman:

.EQ
gsize 16
gfont R

.EN

In place of R, any of the troff font names may be used. The size
after gsize can also be a relative change with + or -.

Generally, gsize and gfont appear at the beginning of a document.
They can also appear throughout a document. The global font and
size can be changed as often as needed, for example, in a footnote in
which the size of equations should match the size of the footnote text.
Footnote text is usually two points smaller than the main text.
Global size should be reset at the end of the footnote.

4.10 Diacritical Marks

Diacritical marks, a problem in traditional typesetting, are
straightforward in eqn. There are several words used to get marks

INPUT OUTPUT

x dot x
x dotdot x
x hat x
x tilde x
x vec x
x dyad x
x bar x
x under x

The diacritical mark is placed at the correct height, and bar and
under are made the right length for the entire construct. Other

4-18

EQN

marks are centered. An example of an expression using diacritical
marks is:

I t is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar

4.11 Quoted Text

An input entirely within quotes (" ... ") is not subject to font changes
or spacing adjustments normally done by the typesetting program.
This provides for individual spacing and adjusting if needed. For
example:

italic" sin(x)" + sin (x)

produces

sin(x) +sin(x)

Quotes are also used to get braces and other eqn keywords printed.

" { size alpha} "

prints

{ size alpha}

and

roman" { size alpha }"

prints

4-19

EQN

{ size alpha }

The "" construction is often used as a place-holder when
grammatically eqn needs something, but nothing is actually wanted
on the output.

4.12 Aligning Equations

Sometimes it is necessary to align a series of equations at a
horizontal position, often at an equals sign. This is done with two
operations called mark and lineup.

The word mark may appear once at any place in an equation. It
remembers the horizontal position where it appeared. Successive
equations can contain one occurrence of the word lineup. The place
where lineup appears is made to line up with the place marked by the
previous mark if at all possible. For example:

.EQI
x+y mark = z
.EN
.EQI
x lineup = 1
.EN

produces

x+y=z
x=1

The mark and lineup operations do not work with centered equations.
Also, mark does not look ahead.

x mark =1

x+y lineup =z

is not going to work because there is not room for the x+y part after
the mark remembers where the x is.

4-20

EQN

4.13 Big Brackets

To get large brackets [], braces {}, parentheses 0, and bars II around
information that exists on more than one line, the left and right
keywords are used.

left { a over b + 1 right }
= left (cover d right)
+ left [e right]

produces

The resulting brackets are made large enough to cover whatever they
enclose. Other characters can be used besides these, but they are not
likely to look very good. One exception is the floor and ceiling
characters.

left floor x over y right floor
<= left ceiling a over b right ceiling

produces

Braces are larger than brackets and parentheses because they are
made up of three, five, seven, etc., pieces while brackets can be made
up of two, three, four, etc., pieces. Large left and right parentheses
often look strange because of the design of the character set.

The right keyword may be omitted. A "left something" need not
have a corresponding "right something". If the right part is omitted,
braces are put around the thing that the left bracket is to encompass.
Otherwise, resulting brackets may be too large. If the left part is to
be omitted, things are more complicated because technically a right

4-21

EQN

cannot exist without a corresponding left. Instead the following
input will do:

left"" ... right)

The left"" means a " left nothing" which satisfies the rules without
hurting the output.

4.14 Piles

Large braces, brackets, parenthesis, and vertical bars are often used
with another facility (piles) which makes vertical piles of objects.
Elements of the pile (there can be any number) are centered one
above another, at the right height for most purposes. The keyword
above is used to separate the pieces; braces are used around the
entire list. Elements of a pile can be as complicated as needed, even
con taining more piles.

Three other forms of pile exist:

• lpile makes a pile with the elements left-justified

• rpile makes a right-justified pile

• cpile makes a centered pile, just like pile.

Vertical spacing between pieces is somewhat larger for lpile, rpile,
and cpile than it is for ordinary piles. For example, to get

sign (x) == 1 ~
-1

if x>O

if x=o
if x<O

the following is input.

4-22

sign (x) == left {
rpile {1 above 0 above -1}
--lpile {if above if above if}
--lpile {x>O above x=O above x<O}

EQN

The left { construction makes a left brace large enough to enclose the
rpile { ... }, which is a right-justified pile of "above ... above ... ".
The lpile construction makes a left-justified pile.

4.15 Matrices

It is possible to make matrices. For example, to make a neat array
like

the following text is the input:

matrix {

}

ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

This produces a matrix with two centered columns. Elements of the
columns are then listed just as for a pile. Each element is separated
by the word "above". The leol or reol keyword can also be used to
left- or right-justify columns. Each column can be separately
adjusted, and there can be as many columns as desired.

The reason for using a matrix instead of two adjacent piles is if the
elements of the piles are not all the same height they will not line up
properly. A matrix forces them to line up because it looks at the
entire structure before deciding the spacing to use.

Note: Each column must have the same number of elements.

4-23

EQN

4.16 In-Line Equations

In a mathematical document, it is necessary to follow mathematical
conventions in display equations and in text. Making variable names
(such as x) italic is one instance. Although this could be done by
surrounding the appropriate parts with .EQ and .EN, the continual
repetition of .EQ and .EN is a nuisance. Furthermore, with -mm,
.EQ and .EN imply a displayed equation.

The eqn program provides a shorthand notation for short in-line
equations. Two characters can be defined to mark the left and right
ends of an in-line equation, and then expressions can be typed in the
middle of text lines .

. EQ
delim $$
.EN

The three lines added to the beginning of the document set both the
left and right delimiter characters to dollar signs. A sample input is:

Let $alpha sub i$ be the primary variable, and let $beta$
be zero. Then it can be shown that $x sub 1$ is $>=0$.

to produce:

Let (Xi be the primary variable, and let fJ be zero. Then it can
be shown that Xl is :2:0.

This works as expected-space characters, newline characters, etc.,
are significant in the input text, but not in the resultant equation.
Multiple equations can occur in a single input line. Space is left
before and after a line that contains in-line expressions so that a tall
expression will not interfere with surrounding lines. To turn off the
delimiters:

.EQ
delim off
.EN

4-24

EQN

Note: The following should be observed when using the in-line
equations format:

• Do not use braces, tildes, circumflexes, or double quotes
as delimiters .

• In-line font changes must be closed before in-line
equations are encountered.

4.17 Defines

There is a definition facility, so a user can say

define name ' ... '

at any time in the document. Henceforth, any occurrence of name in
an expression will be expanded into whatever was inside the quotes
in its definition. This lets users tailor the language to their own
specifications. For example, if the sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper; typing time can be saved each
time the sequence is use by defining it:

define xy 'x sub i sub 1 + y sub i sub l'

This define makes xy a shorthand for whatever characters occur
between the single quotes in the definition. Any character can be
used instead of the quote to mark the ends of the definition as long
as it does not appear inside the definition.

The above expression can now be input as follows:

.EQ
f(x) = xy ...
. EN

4-25

EQN

Each occurrence of xy will expand into its definition. Spaces (or
their equivalent) are to be left around the name when used. The eqn
program will identify it as special.

Although definitions can use previous definitions, as in:

.EQ
define xi 'x sub i '
define xiI 'xi sub 1 '
.EN

it is erroneous to define something in terms of itself. For instance:

define X 'roman X '

Since X is now defined in terms of itself, problems will result.
However, if the following expression is used, the quotes protect the
second X, and everything works fine.

define X 'roman" X" ,

The eqn keywords can be redefined. Making / mean over can be done
with the following statement:

define / 'over'

To redefine over as / use:

define over '/'

If different things are needed to be printed on a terminal and on the
typesetter, symbols may be defined differently in neqn and eqn.
This can be done with ndefine and tdefine. A definition made with
ndefine takes effect when running neqn. When tdefine is used, the
definition applies only for the eqn processor. Names defined with
the define facility apply to both eqn and neqn.

4-26

EQN

4.18 Local Motions

Although the eqn formatter tries to position things correctly on the
paper, it occasionally needs tuning to make the output just right.
Small extra horizontal spaces can be obtained with tilde and
circumflex. By using back n and fwd n, small amounts are moved
horizontally, where n is how far to move in 1/100's of an em (an em
is about the width of the letter "m"). Thus, back 50 moves back
about half the width of an "m". Similarly, things can be moved up or
down with an up n and a down n. As with sub or sup, local motions
affect the next thing in the input, and this can be something
arbitrarily complicated if it is enclosed in braces.

4.19 Precedence

Precedence rules resolve the ambiguity in a construction like

a sup 2 over b

The "sup" is defined to have a higher precedence than "over". A user
can force a particular analysis by placing braces around expressions.
If braces are not used to group functions, the eqn formatter will do
operations in the following order:

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

The following operations group to the left:

over sqrt left right

All others group to the right.

4-27

EQN

5. Troubleshooting

If a mistake is made in an equation, such as omitting a brace, having
one too many braces, or having a "sup" with nothing before it, the
eqn formatter produces the following message:

syntax error between lines x and y, file z

where x and yare approximately the lines between which the trouble
occurred, and z is the name of the file in question. There are also
self-explanatory messages that arise when a quote is omitted or eqn
is run on a nonexistent file. To check a document before printing

eqn files >/dev/null

discards the ou tpu t but prints the message.

It is easy to leave out a dollar sign when used as delimiters. The
checkeq program checks for misplaced or missing dollar signs (in­
line delimiters) and similar troubles.

In-line equations can be only so big because of an internal buffer in
the troff formatter. If a "word overflow" message is received, the
limit has been exceeded. Printing the equation as a displayed
equation usually causes the message to go away. The "line overflow"
message indicates that an even bigger buffer has been exceeded. In
this case, the equation must be broken into two separate ones,
marking each with .EQ/.EN delimiters. The eqn program does not
warn about equations that are too long for one line.

4-28

PREPROCESSORS REFERENCE 307-153 COMMENT FORM

Your comments and suggestions are appreciated and will help us to provide the best
documentation for your use.

1. How would you rate this document for COMPLETENESS? (Please Circle)

Excellent Adequate Poor
4 ----------------------3 ----------------------2 ----------------------1 ----------------------0

2. Identify any information that you feel should be included or removed.

3. How would you rate this document for ACCURACY of information? (Please Circle)

Excellent Adequate Poor
4 ----------------------3 ----------------------2 ----------------------1 ----------------------0

4. Specify page and nature of any error(s) found in this document.

5. How would you rate this document for ORGANIZATION of information? (Please Circle)

Excellent Adequate Poor
4 ----------------------3 ----------------------2 ----------------------1 ----------------------0

6. Describe any format or packaging problems you have experienced with this document.

7. Do you have any general comments or suggestions regarding this document?

8. We would like to know a little about your background as a user of this document:

A. Your job function ___________ _

B. Number of years experience with computer hardware: operation ___ ,
maintenance

C. Number of years experience with computer software: user ___ ,
programmer ___ .

Your Name _________________ Phone No. _______ _
Company ______________________________ __
Address ______________________________ ___
City & State _____________________ Zip Code __ _

Western Electric

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1999 GREENSBORO, N.C·

POST AGE WILL BE PAID BY ADDRESSEE

DOCUMENTATION SERVICES
2400 Reynolda Road
Winston-Salem, N.C. 27106-9989

1111.11. II I. 111111 •• II 11111. III I. 1111 •• 1.1.1 .. 1.111 I

Do Not Tear-Fold Here and Tape

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	0000
	0001
	001
	1-01
	1-02
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	replyA
	replyB

